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Installation 

 

1. Introduction 
 
Over 20+ years, the Dependable Systems research group in the Department of 
Computer Science at the University of Hull has pioneered the development of novel 
methods and tools for dependability analysis and optimisation of complex safety 
critical engineering systems collectively known as Hierarchically Performed Hazard 
Origin and Propagation Studies (or HiP-HOPS). 
 
Key features of the HiP-HOPS software tool include: 
 

• Fast algorithms for bottom up dependability analysis via automatic synthesis 
of Fault Trees and Failure Models and Effects Analyses (FMEAs) based on 
hierarchical architectural models. 
 

• Novel algorithms for top-down semi-automatic allocation of safety 
requirements in the form of Safety Integrity Levels - this work automates 
some of the processes for ASIL allocation specified in the new automotive 
safety standard ISO26262. 
 

• A novel extension of dependability analyses with genetic algorithms that 
solves difficult multi-objective optimisation problems in the design of 
architecture and maintenance of safety critical systems. 

 
This document is the user manual for the tool and explains both the background 
behind how the tool functions, how to use the tool, and some tutorial examples to 
better understand and highlight major features. 
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2. All about HiP-HOPS 
 

2.1. Why use HiP-HOPS 

Fault Tree Analysis (FTA) and Failure Modes & Effects Analysis (FMEA) are classical 
system analysis techniques used in reliability engineering. They are methods by 
which we can discover information about the potential faults in a system that we can 
then use to correct those faults. Both are widely used in the automotive, aerospace, 
nuclear, and other safety critical industries.  
 
FTA is a deductive technique, which means it works from the top down. This is done 
by assuming a system failure has occurred and working backwards to try to 
determine what possible combinations of events might have caused it; the system 
failure then becomes the top event of the fault tree, and the individual component 
failures form the leaf nodes (or basic events), and are combined through logical 
gates such as OR and AND. The fault tree can then be analysed either qualitatively, 
to determine the smallest combinations of basic events needed to cause the system 
failure, or quantitatively, to obtain the probability of the top event occurring.  
 
FMEA, by contrast, is an inductive technique, and works from the bottom up. It 
involves proposing a certain event or condition, and then trying to assess the effects 
of that initial event on the rest of the system. The end result is a table of failures and 
their effects on the system, which provide the analyst with an overview of the 
possible faults. 
 
Both techniques are useful and provide valuable information about systems, but both 
suffer from the same flaw: they are primarily manual techniques, and the process of 
performing these analyses can be laborious, especially for larger and more complex 
systems. In such cases, it is more likely that the analyst will make a mistake, or that 
the results once obtained are too numerous to interpret efficiently.  
 
This problem means that both FTA and FMEA tend to be performed only once, either 
after the system has been designed, in order to check its reliability, or after the 
system has been put into operation and has failed, in order to find out what went 
wrong. This is unfortunate, because both FTA and FMEA are potentially very useful 
when they are integrated into the design process itself, so that a system can be 
designed with safety and reliability in mind. By using these system analysis 
techniques as part of an iterative design process, it is possible to identify and remedy 
potential flaws and faults much earlier, thereby saving both time and effort and 
producing a more reliable product. 
 
However, before FTA and FMEA can be incorporated into the design process in this 
way, they need to be automated in some fashion, so that they can be carried out 
much more quickly and efficiently, and thus maximising their contribution to the 
design. The HiP-HOPS Fault Tree Synthesis (FTS) tool is intended to achieve such a 
goal. By including reliability annotations as part of the system model, HiP-HOPS can 
examine the model and automatically construct and analyse both fault trees and 
FMEAs. The result is a semi-automated process which takes much of the burden off 
the system designer and speeds up the analysis considerably, allowing the designer 
to quickly identify weak points in the model and take steps to remedy them. 
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2.2. Features of the tool 

HiP-HOPS (Hierarchically Performed Hazard Origin & Propagation Studies) works 
with the modelling package used by the designer to obtain information about the 
reliability of the system being modelled. By annotating the model with data describing 
how individual components can fail, HiP-HOPS can then take that data and produce 
a series of fault trees from it, and from those trees it can generate a wealth of 
reliability information presented in the form of an FMEA table.  
 

HiP-HOPS has been integrated 
with modelling package Matlab 
Simulink, allowing greater 
feedback to the user and a wider 
range of functionality. 
 
The tool allows the user to load a 
model of a system to be loaded 
and parsed. Once this internal 
representation of the model has 
been loaded, the tool synthesises 
fault trees for every system failure 
in the model, and combines them 
to create the FMEA.  
 
During this process, a lot of other 
useful analysis is carried out; the 
minimal cut sets are obtained, 
which are the minimum 
combinations of basic events 
required to cause the top event, 
and the unavailability, or 
probability, of the top event is also 
calculated. 
 
These results are integrated into 
the resultant FMEA tables, which 
are presented in the form of 
hyperlinked web pages. This 
format allows the designer to 
locate a specific failure and click on 
it to find the effects it has on the 
rest of the system.  
 
This whole process is illustrated in 

Figure 1, from the annotation of the model with the failure data at the top, through the 
fault tree synthesis and analysis, and culminating in the FMEA. Best of all, it does 
this in a matter of seconds or minutes, not days. 

 

Thus, in summary, HiP-HOPS has the following capabilities: 
 

Figure 1: The HiP-HOPS Process 
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• Works with Matlab Simulink to analyse annotated model files generated by that 
program; 

• Can parse those models and synthesise fault trees from them; 

• Can quickly generate minimal cut sets; 

• Calculates unavailability for the top events; 

• Generates FMEA and FTA results in the form of hyperlinked web pages; 

• Can perform semi-automatic decomposition of safety requirements in the form of 
Safety Integrity Levels (SILs, ASILs, DALs etc); 

• Can perform multi-objective optimisation of the models to produce a set of trade-
off solutions to choice of alternative components and best sites for redundancy 
allocation. 

2.3. How the tool works 

The features of the tool can be divided into three main parts. The first part is safety 
analysis which performs a single pass analysis of the annotated model. The second 
is decomposition of SILs across the system architecture, which uses an optimisation 
process to find the 'cheapest' allocations. The third is optimisation which uses a 
multi-objective genetic algorithm to automatically improve the dependability 
characteristics of the model. The optimisation tool makes use of the analysis 
functions to evaluate the automatically generated alternative designs. These three 
functions will be discussed now in greater detail. 
 

2.3.1. Safety Analysis 

First the process of providing a single pass analysis is described. 

Overview 

HiP-HOPS analysis consists of three main phases. The first phase consists of 
annotating the system model with the failure data needed to produce the fault trees 
and perform the analysis. This phase must be integrated into the modelling tool used 
to design the system model, since they are so closely related. In this case, the failure 
data is entered via a graphical user interface within Matlab, as explained in section 4. 
 
The second phase of HiP-HOPS analysis is the fault tree synthesis process. In this 
process, the tool examines the system model and its failure data and combines it to 
create a series of fault trees. It works by taking the failures of system outputs and 
working backwards through the model to determine which components caused those 
failures. These failures are then joined together using the appropriate logical 
operators to construct fault trees with the failures at the system outputs as the top 
events and the root causes as basic events. 
 
The third and final phase of HiP-HOPS takes the newly constructed fault trees and 
analyses them. The result is an FMEA, which is a combination of all the information 
stored in the fault trees and presented in the form of a table listing the effects of each 
component failure on the rest of the system. As part of this process, more analysis is 
carried out on the fault trees, both qualitative (logical) and quantitative (numerical). 
This provides both the minimal cut sets of the fault tree and the unavailability of the 
top event.  
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Annotation Phase 

Before any fault trees can be generated, the tool needs to know how the various 
components of the system are interconnected, and how each one can fail. The 
structural data is provided by the model itself, which shows the basic topology of the 
system and the connections between the various components and subsystems. The 
models can also be hierarchically arranged, so that systems can be decomposed into 
subsystems which each have their own components. The types of models which 
HiP-HOPS can be applied to are varied: fluidic systems, electrical or electronic 
systems, mechanical systems, and even more conceptual data flow based models 
are all suitable, as long as they can be augmented with failure data.  
 
The failure data is what needs to be entered separately; each component or 
subsystem needs its own local failure data, which describes what can go wrong with 
that component and how it responds to failures elsewhere in the system. This is 
achieved by annotating the model with a set of failure expressions showing how 
deviations in the component outputs (output deviations) can be caused either by 
internal failures of that component (which become basic events) or corresponding 
deviations in the component’s inputs. Such deviations include unexpected omission 
of output or unintended commission of output, or more subtle failures such as 
incorrect output values or the output being too early or late. This logical information 
explains all possible deviations of all outputs of a component, and so provides a 
description of how that component fails and reacts to failures elsewhere. Once done, 
the data can then be stored in a library, so that other components of the same type 
can use the same failure data. This avoids the designer having to enter the same 
information many times. 
 
At the same time, numerical data can be entered for the component, detailing the 
probability of internal failures occurring and the severity of output deviations. This 
data will then be used during the analysis phase to arrive at a figure for the 
unavailability of each top event. Other information can be added at this stage to 
facilitate more advanced analysis, including the option to enter information for 
different implementations of a component to allow an optimisation algorithm to 
determine the most efficient choice of component to use, and in the future, also the 
addition of temporal data to describe more complicated failure behaviour. 
 
Because all of this data needs to be entered for each component, it is necessary for 
this to be done as part of the modelling tool itself, where the parts of the system are 
readily visible. This requires a user interface to be created to allow for the data entry 
that is separate to the main part of HiP-HOPS itself, and instead integrated with the 
modelling tool directly. 
 
In order to introduce some of the major concepts, a simple example of a standby 
recovery system, shown in  
Figure 2, will be used. 
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Figure 2: A simple example of a standby recovery system 

 
It is composed of one input component, ‘SensorInput’, and one subsystem, ‘Standby 
Recovery Block’, which is composed itself of two sub-components, ‘Primary’, and 
‘Standby’. ‘Primary’ is the main subcomponent of the standby-recovery system and 
processes the input from the ‘SensorInput’. The 'Standby' component monitors the 
output from 'Primary' and is designed to take over operation if it detects a failure of 
the ‘Primary’. 
 

Table 1 shows the failure modes of the components in the example system: 

 

Component Failure Modes Probability 

Standby Recovery 
Block 

ElectroMagneticInterference 0.001 

Primary InternalFailure 0.03 

Standby InternalFailure 0.02 

SensorInput InternalFailure 0.05 

Table 1: Failure modes for standby recovery system 

 

Table 2 shows the failure annotations for the components in the example system. 

 

Primary 

Sensor Input 

Input Output 

Standby 

Monitor Output 

Input 

Output 

Standby Recovery Block 

Input Output 
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Table 2: Failure data for standby recovery system 

 

 
Table 2 defines that the omission of output of the SensorInput component is caused 
only by its internal failure. 
 
The ‘Monitor’ port detects omissions of output of the ‘Primary’ component before 
activating the ‘Standby’ component. If the ‘Primary’ component is functioning then the 
‘Standby’ cannot fail (or its failure is irrelevant) as it is inactive. If the ‘Standby’ 
component is thus activated then an output omission is caused by either an internal 
failure or the propagation of input omission.  
 
An omission of ‘Primary’ output is caused by an internal failure or the propagation of 
an omission of input. 
 
At the top level, the system output of the ‘Standby Recovery Block’ has an output 
deviation of type ‘Omission’ that is caused by either the failure mode ‘electromagnetic 
interference’, or by the conjunction of omissions occurring at the outputs of both the 
primary and standby components.  
 
The Boolean failure expressions in the component annotations each describe a 
Component Fault Tree (CFT) that describes propagation of failure through it. 
However, such a fault tree is incomplete because its leaf nodes will not all be failure 
modes – some may be input deviations, which are failures originating in other 
components. Similarly the top node is an output deviation that may be relevant in 
further components in the system. 
 
These CFTs for the example are shown in Figure 3 (for the ‘Standby Recovery 
Block’), Figure 4 (for the ‘Primary’ component), Figure 5 (for the ‘Standby’ 
component), and Figure 6 (for the ‘SensorInput’ component). In these diagrams the 
circles with an arrow denote an input deviation where the arrow is entering the circle 
and an output deviation where the arrow is leaving the circle. 

Component Output deviations Failure expressions 

Standby 
Recovery Block 

Omission - Output Omission – Primary.Output 
AND 

Omission – Standby.Output 
OR 

ElectroMagneticInterference 

Primary Omission – Output Omission – Input OR Failure 
 

Standby Omission – Output Omission – Monitor 
AND 

(Omission – Input OR Failure) 

SensorInput Omission - Output Failure 
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Figure 3: CFT described by annotation for standby recovery block subsystem 

 
 

 

Figure 4:  CFT described by annotation for primary component 

 
 

Primary 
Omission of Output 

Primary 
Omission of Input 

Primary 
Internal Failure 

Standby Recovery Block 
Omission of Output 

Standby Recovery Block 
Omission of both Primary and 

Standby function 

Primary 
Omission of Output 

Standby Recovery Block 
ElectroMagneticInterference 

Standby 
Omission of Output 
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Figure 5: CFT described by annotation for standby component 

 
 

 

Figure 6: CFT described by annotation for SensorInput component 

 

Once the components of the model have been fully annotated, the manual phase of 
HiP-HOPS is complete and the remaining stages are fully automatic. 

SensorInput 
Omission of Output 

SensorInput 
Internal Failure 

ssio

n of 
Out
put 

sorInput 
Internal Failure 

Standby 
Omission of Output 

Standby 
Omission of 

Monitor 

Standby 
Internal Failure 

Standby 

Standby 
Omission of Input 
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Synthesis Phase 

 

 

Figure 7: The synthesis of fault trees from the system model 

 
Once the local failure data has been entered into the system model, the model can 
then be given to HiP-HOPS proper for synthesis to take place. This phase functions 
by examining how local failures of components propagate through the model and 
cause failures at the outputs of the system. It is therefore necessary to be able to 
identify which parts of the model function as outputs of the system, so that the 
failures of these parts become top level failures of the system as a whole. This is 
done by defining hazards, top-level system events with safety or reliability 
implications, which then link to output deviations within the system.  
 
In the case of an engine, for example, then one system output could be the 
application of motive power. A failure to provide this would be one possible hazard 
and would be treated as a starting point for the synthesis. In addition, unexpected 
output (i.e. the engine moving when it should not) could be another hazard. 
 
For each of these hazards, HiP-HOPS generates a local fault tree describing the 
causes of that hazard in terms of output failures of components within the system. 
The tool then examines the causes of those output failures, which are typically 
internal faults and inputs to those component, and in turn travels back to see what 
output failures may be propagated to the inputs. It then makes local fault trees for 
those output failures, and so on until there are no connected components remaining. 
It then goes back through and combines the local fault trees into a single fault tree for 
each possible hazard, which shows how that hazard is caused by combinations of 
malfunctions or other failures of components elsewhere in the system. For our 
engine, this means we would have one fault tree for “no engine power on demand” 
and one fault tree for “unexpected engine power”. 
 

 

Component failures 

System failures 

Global  
propagation 
of failure  
in the system 

System  
failures 

Fault tree 
synthesis  
algorithm  Component  

failures & local fault  
propagation from 
inputs to outputs 
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The synthesis phase begins with the causes of the system-level hazards, which are 
always output deviations. The algorithm locates the CFT for each output deviation 
and traverses the tree until it locates a terminal input deviation. The input port that is 
associated with that input deviation is then selected.  
 
The algorithm then follows the connections from the selected component port to the 
output ports of the connected components. The output deviation matching the failure 
class of the connected input deviation is then selected. Its CFT is joined to the input 
deviation from the connected component. 
 
This cycle of traversing CFTs and connections is repeated until there are no more 
unconnected input deviations and the system fault trees are complete. 
 
In the standby recovery example in  
Figure 2, the system output is the omission of output of the ‘Standby Recovery 
Block’. This is the top node of a CFT in the ‘Standby Recovery Block’ and marks the 
start of the synthesis for this example.  
 
This CFT has two input deviations at its leaves, ‘omission of Primary output’ and 
‘omission of Standby output’, and so the algorithm finds the corresponding 
components where it discovers further CFTs. The top nodes of these are added as 
child branches to the input deviation leaf nodes and the process is repeated, each 
time connecting output deviation CFTs to input deviation leaf nodes.  
 
The omission of ‘Primary’ output is partly caused by an omission of its input, so the 
connection at the input is followed to the ‘SensorInput’ component where the output 
deviation that exists there is connected to the growing system fault tree. As the 
deviation of ‘SensorInput’ output is only caused by an internal failure, the propagation 
of that branch is terminated. 
 
The ‘omission of Standby input’ branch is treated in the same way and thus a 
complete system fault tree, describing the propagation of failure throughout the whole 
model, is synthesised from the failure expressions. The result of synthesis of the 
example model is shown in  
Figure 8. It can be seen from this diagram how the system fault tree is composed of 
the mini fault trees shown in Figure 3 to Figure 6. The output deviations that are the 
top nodes of the component fault trees are shaded. 
 
In the next HiP-HOPS phase the fault tree is analysed to extract quantitative and 
qualitative information. 
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Figure 8: Fault tree synthesised from standby recovery example. 
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Analysis phase 

The result of the synthesis process is a set of one or more interconnected fault trees 
and therefore the next stage of the HiP-HOPS technique is to analyse those fault 
trees using FTA. The fault trees represent the propagation of failure logic through the 
system, but they can often be large and complex. By reducing the fault trees to their 
minimal cut sets we retain the relationship between the basic events and the top level 
system event but strip out the intermediate propagation paths and any redundant 
causes. 
 
The main computational expense when minimising the cut sets is the redundancy 
checking. Several methods of increasing the performance of this process, including 
modularisation, fault tree contraction, and use of cut set cataloguing, are applied for 
this purpose. 
 
The following Boolean laws can be applied to obtain minimal cut sets: 
 

• The Law of Absorption: E1 + E1.E2 = E1 
o The cut set containing E1.E2 was removed as the action of E1 alone 

is sufficient to cause the top event and is therefore in its minimal form. 
o E1 + E1 = E1 is also a form of Absorption 

 

• The Laws of Idempotence: E1.E1 = E1 and E1 + E1 = E1 
o The former removes repeated events within cut sets and the latter 

removes repeated cut sets. 
 
HiP-HOPS also supports the use of NOT gates and non-coherent fault trees. A NOT 
gate is typically used to indicate that a basic event must not occur (which is called a 
"complement" event). For example, we can say that an output deviation is caused by 
a value failure of one input as long as there is not an omission of the other input, e.g.: 
 

• Omission-out = Value-In1 AND NOT Omission-In2 
 
However, the use of NOT gates (indicated by the ‘~’) introduces potential 
contradictions and implicit causes according to the Consensus Law: 
 

• Contradictions: E1.~E1 = 0 

• The Consensus Law: E1.E2 + ~E1.E3 = E1.E2 + ~E1.E3 + E2.E3 
 
Generating and testing these implicit causes can incur a significant performance 
penalty, so it is recommended to avoid NOT gates where possible. 
 
In order to keep the number of checks to a minimum the cut sets are checked for 
redundancy as they are created so that redundant combinations are quickly identified 
and removed. This ensures that they cannot affect or be combined with more cut sets 
later in the traversal of the fault tree. 
 
Once the minimum cut sets have been identified, they can subsequently be used for 
quantitative analysis to calculate the system unavailability Qs (where basic events 
have quantitative data) using the approximate Esary-Proschan method: 
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𝑄𝑆 =  1 −  ∏(1 − 𝑄𝑐𝑢𝑡𝑖
)

𝑛

𝑖=1

 

 
(Where n is the number of independent cut sets and Qcuti is the unavailability of the 
cut set i). 
 
The system failure frequency can also be similarly calculated using the Esary-
Proschan method: 
 

𝜔𝑠 =  ∑ 𝜔𝑐𝑢𝑡𝑖

𝑛

𝑖=1
 ∏ (1 −  𝑄𝑐𝑢𝑡𝑗)

𝑛

𝑗=1,𝑗 ≠𝑖
 

 
(Where 𝜔𝑐𝑢𝑡𝑖 is the frequency of cut set i and Qcutj is the unavailability of cut set j). 
 
The unavailability and frequency of a single cut set are given by: 
 

𝑄𝑐𝑢𝑡 =  ∏ 𝑄𝑖

𝑛

𝑖=1
 

 
and 
 

𝜔𝑐𝑢𝑡 =  ∑ 𝜔𝑗

𝑛

𝑗=𝑖
 ∏ 𝑄𝑖

𝑛

𝑖=1,𝑖 ≠𝑗
 

 
(Where Qi and wj are the unavailability and frequency of each of the n events in the 
cut set.) 
 
In addition to the quantitative analysis that can be performed on the minimal cut sets, 
a further qualitative stage can be applied to generate an FMEA. Figure 9 shows the 
inverse relationship between the diagnostic failure propagation information in the 
fault trees, where the component failure modes that cause a system failure can be 
determined, and the causative nature of the FMEA, where a basic event (or 
combination of several events) have an effect on the system level. 
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Figure 9: Inverse relationship between fault trees (left) and FMEA (right) 

 
The minimal cut sets contain the non-redundant propagation of failure in the fault tree 
and an algorithm is used to catalogue each component failure mode in each fault tree 
and note which system failures they cause and in combination with which other 
component failure modes. This information is the core of an FMEA. 
 
The deductive nature of this process is important for safety analysis as it allows large 
combinations of basic events to be considered in the FMEA, unlike traditional manual 
methods that could only consider single points of failure or fault injection simulation 
methods that are similarly limited by combinatorial explosion. 
 
The last step is to combine all of the data produced into an FMEA, which is a table 
that concisely illustrates the results. The FMEA shows the direct relationships 
between component failures and system failures, and so it is possible to see both 
how a failure for a given component affects everything else in the system and also 
how likely that failure is. However, a classical FMEA only shows the direct effects of 
single failure modes on the system, but because of the way this FMEA is generated 
from a series of fault trees, HiP-HOPS is not restricted in the same way, and the 
FMEAs produced also show what the further effects of a failure mode are; these are 
the effects that the failure has on the system when it occurs in conjunction with other 
failure modes. Figure 10 shows this concept. 
 

Induction 
of effects 

Deduction 
of causes 

System Failures 

Component Failure Modes System Failures 

Component Failure Modes 
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Figure 10: The conversion of fault trees to FMEA 

 
In Figure 10, F1 and F2 are system failures, and C1 – C9 are component failures. 
For C3, C4, C6 and C7, there are no direct effects on the system – that is, if only one 
of these components fail, nothing happens. However, they do have further effects; for 
example, C3 and C4 both occurring in conjunction will cause F1 to occur.  
 
The FMEAs produced, then, show all of the effects on the system, either singly or in 
combination, of a particular component failure mode. This is especially useful 
because it allows the designer to identify failure modes that contribute to multiple 
system failures (e.g. C5 in the example of Figure 10). These common cause failures 
represent especially vulnerable points in the system, and are prime candidates for 
redundancy or extra reliable components. 
 

2.3.2. Decomposition of Safety Requirements 

It is common practice in safety standards like IEC 61508 or ISO 26262 to indicate the 
stringency of the safety requirements applying to a system function or element with a 
Safety Integrity Level (or SIL). Different standards have different conventions, but in 

 

Multiple Failure System FMEA   

Component  
failure   

Direct  
effects on  
the system   

Effects caused in  
conjunction wit h   
(other events)   

C1   F1   -   
C2   F1   -   
C3   -   F1  (C4 )   
C4   -   F1  (C3 )   
C5   F1,F2   -   
C6   -   F1,F2 (C7)   

  
  

FMEA synthesis     algorithm 
  

  

F1   F2 
  

Network of Interconnected System Fault Trees    

C1   C2  C3  C4  C5   C6   C7   C8   C9 

C7   -   F1,F2 (C6)   
C8   F2   -  
C9   F2   -   
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general SILs represent a qualitative measure of required risk reduction, typically on a 
scale, e.g. from 1 to 4 with 1 being least strict/dependable and 4 being most 
strict/dependable. ISO 26262 uses Automotive SILs (ASILs), which range from A 
(least dependable) to D (most dependable), while ARP 4754 defines Development 
Assurance Levels (DALs), ranging from A – E, with E being least dependable and A 
being the most. 
 
SILs are typically defined as part of risk analysis in relation top-level safety hazards. 
The higher the risk the hazard represents (either in terms of severity, likelihood, or 
both), the higher the SIL likely to be assigned to it. The intention is that if the 
corresponding system components are developed to the appropriate standard of 
safety represented by the SIL, the risk will be brought down to acceptable levels. 
 
However, decomposition of SILs can be a complex problem. There can be many, 
many contributing components to any given hazard, and if all components inherited 
the SIL of the hazard they contribute to, then the cost of developing the system could 
be prohibitively expensive. 
 
As such, most standards allow for a higher SIL to be met by a suitable combination of 
independent components with lower SIL values. The simplest way to think of this is to 
assign an integer to each SIL and sum them. For example, ISO 26262 allows an 
ASIL D requirement to be met by a pair of independent components like so (where 
QM = quality management only, i.e., no special safety requirements): 
 

Component 1 Component 2 Overall 

QM (0) ASIL D (4) 0 + 4 = 4 (ASIL D) 

ASIL A (1) ASIL C (3) 1 + 3 = 4 (ASIL D) 

ASIL B (2) ASIL B (2) 2 + 2 = 4 (ASIL D 

ASIL C (3) ASIL A (1) 3 + 1 = 4 (ASIL D) 

ASIL D (4) QM (0) 4 + 0 = 4 (ASIL D) 

 
This helps reduce cost by distributing the burden of meeting a safety requirement 
over multiple independent components (e.g. typically, two ASIL B components would 
be less expensive than a single ASIL D component). However, it also produces a 
combinatorial challenge of assigning suitable SILs to individual components (or even 
failure modes of those components) that minimises cost while continuing to meet 
overall system safety requirements. 
 
Because HiP-HOPS builds up a model of causation and failure propagation via its 
fault tree synthesis, it knows which component failure modes contribute to which 
hazards. Thanks to the AND gates in the fault trees, it also knows how combinations 
of failure modes lead to the hazards. This information can therefore be used as the 
basis of an automatic SIL decomposition process. An exhaustive evaluation of the 
search space would be infeasible, since the number of potential allocations increases 
very quickly with every AND gate, so a Tabu search-driven optimisation process is 
applied.  
 
To perform SIL decomposition, each hazard needs to be assigned an integer SIL 
value. A cost heuristic may also be defined; otherwise, a default heuristic where cost 
= SIL x 10 is used (e.g. SIL 1 = 10, SIL 4 = 40 etc). Then HiP-HOPS will attempt to 
assign a SIL to every basic event such that the overall requirements are met while 
the total cost is minimised.  
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For example, consider a simple scenario with three components, C_A, C_B, and 
C_C, each with a single internal failure mode, A, B, and C respectively. Two hazards 
are defined: 
 

• H1 = A AND B 

• H2 = B OR C 
 
where H1 = SIL 4 and H2 = SIL 2. 
 
We could naively test every possible combination of SILs to the three failure modes, 
but most of these will either fail to meet the requirements imposed on the hazards 
(i.e., A + B >= 4, B >= 2, and C >= 2) or will be unnecessarily strict and thus 
unnecessarily expensive (e.g. assigning SIL 4 to all three). 
 
In this case, the example is small enough that we can explore the possibilities 
manually. For A and B, we know they must total 4, thus there are 5 "optimal" 
allocations: 
 

A B 

0 4 

1 3 

2 2 

3 1 

4 0 

 
However, we also have a second constraint: B and C must both be at least 2. Thus 
we can eliminate the last two rows of this table, since either B would fail to meet the 
requirement (e.g. A=3, B=1) or, if we increase B, we increase cost for no gain (A=2, 
B=3 is more expensive than needed given that A=2, B=2 is sufficient). 
 
Therefore we have three possible "valid" allocations that are not needlessly strict. We 
can also calculate the cost of each possible allocation using the default heuristic 
(cost = SIL x 10): 
 

A B C Cost 

0 4 2 60 

1 3 2 60 

2 2 2 60 

 
In this case all possibilities are "optimal", as none are cheaper than any other while 
all respect the overall constraints. However, with a different cost heuristic, the results 
may change. For instance, if the cost heuristic was instead 10SIL (so SIL 1 = 10, SIL 2 
= 100, SIL 3 = 1000, SIL 4 = 10000), the results change: 
 

A B C Cost 

0 4 2 10100 

1 3 2 1110 

2 2 2 300 

 
Then in this case, the third option (allocation SIL 2 to each) is the clear victor. 
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As mentioned, the complexity of this process increases rapidly with the number of 
components, hazards, and AND gates in the logic, meaning that to perform it 
exhaustively (let alone manually) soon becomes infeasible. An optimisation process 
is used to instead explore the search space and arrive at suitable allocations much 
more efficiently, though it is not guaranteed to find all optimal solutions. 
 
Care must also be taken to ensure that the AND logic truly does represent 
independent components. If there is a common cause then typically failures cannot 
be considered independent and thus it would be inappropriate to decompose SILs 
across them. 
 

2.3.3. Optimisation 

HiP-HOPS and a multi-objective optimisation algorithm have been combined to 
generate un-dominated trade-off solutions that meet dependability criteria. The 
principle could apply to any optimisation algorithm but the algorithm used is the 
NSGA-II algorithm, a multi-objective genetic algorithm that uses a Pareto-based 
selection method to encourage a wide, even spread of trade-off results. 
 
Figure 11 shows a fuel oil service system for a cargo ship. The example will be 
expanded and used to illustrate concepts throughout this section. 
 

 

Figure 11: Fuel oil service system for a cargo ship. 

When the fuel oil system fails, there is a loss of engine propulsion (OmissionEnergy-
mainEngine.mech) that can lead to the ship becoming grounded as a result of 
drifting. 
 
The following tables contain the implementation failure data for the components in 
the example in Figure 11. The main engine provides the system output (an omission 
of energy at the mechanical output of the engine) which is caused by an omission of 
flow of oil at the input. It has no internal failures. 
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mainEngine 

Output Deviation Description Failure logic 
(Propagation) 

OmissionEnergy-
mech 
(System output) 

Omission of energy at the 
mechanical output of the 
mainEngine caused by an omission 
of flow of oil at the input 

OmissionFlow-
In 

 
The other components in the system (indicator filter, viscosimeter, pre-heater, 
circulation pump, mixing tank, flow meter, automatic filter, booster pump, and service 
tank) each contain 3 alternative subsystems that define different levels of parallel 
redundancy (Figure 12 to Figure 14). In each case the propagation of the omission of 
flow of oil is combined in the ‘AND’ block so that both (or all three) redundant 
components must fail to cause failure of the subsystem. 
 

 

Figure 12: Alternative 1: no redundancy 

 

 

Figure 13: Alternative 2: one parallel redundancy 

 

Figure 14: Alternative 3: two parallel redundancies 



 
 

All about HiP-HOPS 

 
All of the subcomponents have the same failure propagation logic. The omission of 
flow of oil at the output is caused by the omission of flow of oil at the input, or an 
internal failure of the component. 
 

All other system subcomponents 

Output 
Deviation 

Description Failure logic (Propagation) 

OmissionFlow-
Out 

Omission of flow of oil at the 
output can be caused either 
by an omission of flow of oil 
at the input or an internal 
failure mode of the 
component 

OmissionFlow-In  
or  
[component]Failure 

 
Each of the subcomponents has 3 alternative implementations with different costs 
and the internal failure modes have different failure rates. 
 

 Alternative 1 Alternative 2 Alternative 3 

Components Cost Failure 
Rate 

Cost Failure 
Rate 

Cost Failure 
Rate 

Indicator filter 1500 5.0E-7 2500 2.0E-7 3222 1.0E-7 

Viscosimeter 2500 2.5E-6 3178 1.0E-6 3814 5.0E-7 

Pre-heater 2000 6.7E-6 2505 5.0E-6 3956 1.0E-6 

Circulation pump 6000 3.2E-5 13380 2.0E-5 18000 7.0E-6 

Mixing tank 2000 1.6E-5 2963 8.0E-6 4444 2.0E-6 

Flow meter 2000 1.0E-5 3000 1.0E-6 4444 5.0E-7 

Automatic filter 2000 1.0E-5 2647 5.0E-6 3529 1.0E-6 

Booster pump 5000 3.2E-5 10682 2.0E-5 12500 5.0E-6 

Service tank 1500 1.6E-5 1957 5.0E-6 2739 1.0E-6 

 
It is possible to flag both components and individual implementations for 
inclusion/exclusion from consideration during the optimisation. 
 
During optimisation the genetic algorithm can generate different potential solutions by 
selecting between specified alternative implementations of the components and 
subsystems. In some cases this can be simply replacing a component with a more 
reliable or less expensive (but functionally equivalent) version. It is also possible to 
select between replacement subsystems which may employ different fault tolerant 
architectures such as parallel redundancy or standby recovery. 
 
The combination of these two mechanisms allow all aspects of the architecture to be 
altered by the genetic algorithm. 
 
As the algorithm promotes survival of the fittest, it is necessary to evaluate the fitness 
of each new individual and be able to compare it to other individuals in the 
population. 
 

• The evaluation uses the model based evaluation tool HiP-HOPS to calculate 
the objective values of the individuals. 
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• Cost and weight values are calculated by summing the values for all the 

components used in the solution.  
 

• Unavailability is calculated through HiP-HOPS analysis, first traversing the 
model to mechanically synthesise interconnected system fault trees, 
converting the fault trees into their minimal cut sets, and finally using an order 
3 inclusion exclusion algorithm as detailed in the existing HiP-HOPS 
specification.  

 
• Reliability is equal to (1 – unavailability) where repair rate = 0. 

 

• A safety metric could be established qualitatively from the cumulative severity 
of all single points of failure in a given design.  

 

• Risk can be calculated from failure probabilities and severities of the top 
events of the fault trees produced by the tool.  

 
Once the model has been evaluated, calculating the values that correspond to the 
objectives specified by the user, the values are stored with the individual encoding. 
The evaluation is complete and the individual will not be changed therefore the model 
can be deleted for memory efficiency. 
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3. Installation 
 

3.1. Installing HiP-HOPS 

Installing HiP-HOPS is very simple:  
 

1. Run the HiP-HOPS installer: 
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2. Select a directory to install to and choose which profiles to make HiP-

HOPS visible for: 
 

 
 
3. Click "Next"; 

 
4. Click “Next” again to confirm; 
 
5. Close the installer when finished. 

 
 
HiP-HOPS can be uninstalled by using the Programs and Features settings menus. 

3.2. Installing Sentinel UltraPro drivers 

The non-evaluation version of HiP-HOPS requires the Sentinel UltraPro hardware 
usb key to be connected to the PC. To detect the key, the Sentinel drivers need to be 
installed. The driver installer can be downloaded from each version posted on the 
Downloads section of the HiP-HOPS website. 

3.3. Setting up Matlab Simulink for use with HiP-HOPS  

An interface for using HiP-HOPS within Matlab Simulink has been developed to allow 
the HiP-HOPS to be applied to Simulink models. The commands are operated 
through the use of buttons in the HiP-HOPS Launcher. 
 
When you first install HiP-HOPS you need to add the Interface folder to the Matlab 
path. To do this click on the Set Path button in the "Home" ribbon: 
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This opens the path menu, as shown below.  
 

 
 
Click on the ‘Add Folder’ button and use the file dialog window to navigate to the 
location where you installed HiP-HOPS. Select the HiP-HOPS_FailureEditor folder 
and click the ‘OK’ button. Click on ‘Save’ to commit the path entry and then you can 
click on ‘Close’ to exit the window.  
 
You can test that the path was set up correctly by attempting to start the HiP-HOPS 
Launcher. To do this, type 'hiphops' (without quotes) into the Matlab command 

window. If successful, the launcher will appear. 
 
You are then ready to use HiP-HOPS in Matlab. Information on how to conduct 
modelling and failure annotation is found in the following sections. 
 

3.4. Evaluation Version 

The evaluation version of HiP-HOPS is limited to models with no more than 20 
annotated components. This means that if your model contains more than 20 
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components for which you have entered failure data, i.e., basic events and output 
deviations, then the evaluation version will not run. If you are running the evaluation 
version, it will say so in the command window when you run it.  
 

3.5. Example models 

The installation process creates some example Matlab model files in the 'Examples' 
subfolder of the HiP-HOPS installation folder. These are the same models described 
in section 6 and can be studied to see how various HiP-HOPS features are applied in 
practice. These six examples/tutorials are: 
 

1. tutorial1_standbyRecovery.slx: A basic model following the standby-
recovery system described above, used to explain basic modelling and 
annotation concepts. 
 

2. tutorial2_standbyRecoverySubsystem.slx: The same system, but 
introduces subsystems and subcomponents to explain hierarchical modelling. 
 

3. tutorial3_commonCauseFailures.slx: The standby-recovery system again, 
but introduces common cause failures. 
 

4. tutorial4_notgates.slx: A simple 3 component example demonstrating how 
NOT gates can be used in the failure logic. 
 

5. tutorial5_silDecomposition.slx: A more complex example covering a hybrid 
braking system. As well as being a more realistic system, it demonstrates the 
use of the SIL decomposition feature. 
 

6. tutorial6_optimisation.slx: This model describes the ship fuel oil system 
mentioned above and is used to demonstrate the optimisation concept. Its 
various subsystems are also included as separate files (e.g. 
optimisationExampleFlow2.mdl, optimisationExampleFlow3.mdl, etc). 
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4. Using HiP-HOPS with Matlab Simulink 
 
NB: If using HiP-HOPS with Simulink for the first time, the path to HiP-HOPS must 
first be set up as described in section 3.3. 
 
To use HiP-HOPS with Matlab Simulink, you need to open or create a Simulink 
model and launch HiP-HOPS by typing 'hiphops' (without quotes) into the Matlab 

command window. If successful, the launcher will appear: 
 

 

Figure 15: HiP-HOPS Launcher 

 
The Launcher is the main access point to all HiP-HOPS functions and should be kept 
open while modelling (though you can move the Launcher around as you like). The 
five buttons in the Launcher are as follows: 
 

1. Edit current block's failure data: This button allows you to edit the failure 
data of the current component with the Component Failure Data Editor (see 
section 4.2). In order to function, a component (block) must be selected in the 
Simulink window. It will open an interface that enables editing of basic events 
and output deviations etc. 
 

2. Edit component implementation data: This button opens the Component 
Editor (see section 0) for the component implementations (for optimisation 
purposes) but also for perspectives and common cause failures if multi-
perspective modelling is being used. As with the first button, it requires a 
component (i.e., a block) to be selected in the Simulink window. 
 

3. Edit model failure data: This enables editing of the model-level information 
using the Model Parameters Editor (4.10), of which the most important are the 
hazards (which serve as the starting point for analysis).  
 

4. Analyse model: This button begins a HiP-HOPS safety analysis of the 
current model. 
 

5. Optimise model: This button begins an optimisation of the current model. 
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Each interface will be described in further detail below. Note that all of the editor 
windows have a "Save and Close" button (and a "Cancel" button) at the bottom. If 
you wish to save the data, it is important to click the "Save and Close" button. 
Pressing Cancel or closing the window with the X in the top-right will discard any 
data, whether newly added data or editing of existing data. 
 

4.1. Naming Conventions 

 
Before discussing the interface, it is important to note the following naming 
conventions, both within the HiP-HOPS editor windows and within any Simulink 
models used with HiP-HOPS: 
 
Failure to follow these conventions is likely to lead to an error when running 
HiP-HOPS. 
 
Simulink Components and Ports 
All Simulink components and their input/output ports should be named with a 
combination of letters, numbers, and underscores, but must start with a letter. Upper 
case and lower case letters are both permitted. Accented letters (e.g. é) should also 
work. Do not use spaces in names. 
 
Valid examples: component1, Valve, particulate_filter, output1, 

in1, SignalOut, fuel_in 

 
 
HiP-HOPS Basic Events, Common Causes, and Exported Propagations 
These should all follow the same rules as components and port names: they should 
start with a letter, followed by any combination of letters, numbers, and underscores. 
 
Valid examples: blocked, short_circuit, tempOver90, floodInC5 

 
HiP-HOPS Input and Output Deviations 
These consist of two parts, separated by a dash. The first part is the failure class, a 
custom user-defined name for a particular type of failure (e.g. omission, commission). 
These failure classes should all follow the same naming rules as above. The second 
part, after the dash, is the name of the port where the deviation occurs and as such 
should follow the rules for ports as described above. 
 
Valid examples: omission-out1, commission-input, too_high-

signalIn, LowPressure-FuelOut 

 
Uniqueness 
In almost all cases, it is important that names are unique within their context. 
Components in the same subsystem should have unique names, ports within the 
same component should have unique names, basic events within a component 
should all be uniquely named, and so forth. 
 
Fully qualified names 
In some circumstances, HiP-HOPS requires the use of fully qualified names, which 
allow it to correctly identify a component anywhere in the system hierarchy. The 
format of a fully qualified name is as follows: 
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 perspective :: subsystem . component . port 
 
But the exact format depends on what is being referenced. For ports and basic 
events, the above is accurate, e.g.: 
 

• hardware::signalProcessor.out (a port) 

• hardware::cpu.overheating  (a basic event) 

• valve.in1    (a port in a model without perspectives) 

• c1.c1b.c1b4.output   (a port in a deep component hierarchy) 
 
For deviations, the failure class always goes first: 
 

• omission-hardware::signalProcessor.out (an omission at a port) 
 
 

4.2. Component Failure Data Editor 

 

 

Figure 16: The Component Failure Data editor 

 
The Component Failure Data Editor is the most used editor. It allows you to annotate 
the selected component with failure information. This information is divided into four 
categories, each of which has a tab of its own: 
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• Basic Events allows editing of the basic events (component failures). 
 

• Common Causes allows editing of the potential common cause failures 
(PCCFs) in this component. 
 

• Output Deviations allows definition of the deviations at the component's 
output as well as the logical expressions describing their causes. 
 

• Exported Propagations allows definition of deviations that export to a 
different perspective. 

 
All four tabs feature a list of currently defined failure data of that category on the left 
along with three buttons on the right: an Add button (to create a new entry of the 
given type), an Edit button (to edit the selected entry), and a Delete button (to delete 
the selected entry). 
 
At the bottom of the interface is a drop-down selection box that enables you to 
specify how this component propagates failures across different hierarchical levels. 
There are three options: 
 

• Defined here and in the subsystem: If selected, the component will 
propagate both failures defined on the current level as well as from any output 
deviations defined in the component's subsystem (if it has one). This is the 
default and most commonly used option. 
 

• Defined here only: The component will propagate only failures defined on 
the current level. Any output deviations defined in the component's subsystem 
(if it has one) are ignored. This can be useful when attempting to diagnose 
problems with the model's failure data, since it allows you to temporarily 
ignore subsystem data without deleting it. 
 

• Defined in the subsystem only: If selected, the component will propagate 
only output deviations defined in the component's subsystem (if it has one). 

 
As mentioned earlier, to save any data that has been added or edited, the Save and 
Close button must be pressed. 
 
Note also that all HiP-HOPS windows except for the Launcher are modal. You will 
not be able to edit anything else until you have closed them. 
 

4.3. Basic Event Editor 

 
Adding or editing a basic event will open up the Basic Event Editor: 
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Figure 17: Basic Event Editor 

 
This allows you to edit the information for a basic event (i.e., a component failure), 
including its name, its description, and (if appropriate) the quantitative failure model 
and associated parameters. 
 
Basic event names can contain any combination of letters, numbers, and 
underscores, but must begin with a letter. No spaces or other symbols are 
permitted. Note also that the names of all basic event for a given component must be 
unique, though basic events of different components can have the same name. 
 
The description field has no such limitations and is intended primarily for the benefit 
of the user. 
 
The Failure Model allows you to add quantitative failure data to the basic event which 
will allow HiP-HOPS to estimate its probability. There are a number of different 
formulae, each with different parameters, and each will yield a different unavailability 
for the basic event. These can be selected from the drop down menu, changing the 
available parameter fields in the process, and you can then fill in the appropriate 
parameters. 
 
The current formulae are listed below. 
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Constant Failure and Repair Rate 
 
Parameters: 

   - Failure Rate 

   - Repair Rate 
 
This is the currently implemented calculation method, and assumes an exponential 
distribution. The formula for unavailability is as follows: 
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Constant Failure and Mean Time To Repair (MTTR) 
 
Parameters: 

   - Failure Rate 
 MTTR  - Mean Time To Repair 
 
Very similar to above, with the exception that the repair data is entered as the MTTR 

instead. This is then converted to the repair rate   (assuming  = 1 / MTTR) and the 
unavailability calculation 4.1 above is used. 
 
 
Mean Time To Failure(MTTF) and constant Repair 
 
Parameters: 
 MTTF  - Failure Rate 

   - Repair Rate 
 
Very similar to above, with the exception that the repair data is entered as the MTTF 

instead. This is then converted to the failure rate   (assuming  = 1 / MTTF) and the 
unavailability calculation 4.1 is used. 
 
 
Mean Time to Failure and Repair 
 
Parameters: 
 MTTF  - Mean Time To Failure 
 MTTR  - Mean Time To Repair  
 
Like the last, except that both the failure and the repair data are entered as mean 
times. These values will be converted and the formula in 4.1 used. 
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Fixed Unavailability 
 
Parameters: 
 Unavailability  - The constant unavailability 
 
This is the option to choose if you already knows the unavailability of the event. 
 
 
Binomial Failure Model 
 
Parameters: 

   - Failure Rate  

  - Repair Rate 
 n - Number of components 
 m - Minimum components needed to fail to cause subsystem failure 
 T - The time of operation of the subsystem 
 
This model is useful for representing situations where m failed components out of n 
will result in failure, such as in a voter. The formula is as follows: 
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Poisson Failure Model 
Parameters: 

   - Failure Rate 
 n - Number of components in operation at any one time 
 s - Number of spare components available 
 t - Time of operation of the subsystem 
 
This method can be used to model the effects of limited numbers of replacement 
components. Formula: 
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Dormant Failure Model with periodic inspection 
Parameters: 

   - Failure Rate 
 MTTR - Mean time to repair 
 T - Time between inspections 
 
This model can be used when a component is a standby component and only 
activated when its primary fails. Formula: 
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Variable Failure Rate 
Parameters: 
 Slope parameter 1 
 Scale parameter 1 
 End interval 1 
 Scale parameter 2 
 End interval 2 
 Slope parameter 3 
 Scale parameter 3 
 
This model allows the failure of the event to be described as a bath tub with Weibull 
variable failure rates. 
 

4.4. PCCF Editor 

 
Changing to the Common Causes tab allows you to open the Potential Common 
Cause Failure (PCCF) Editor: 
 

 

Figure 18: PCCF Editor 

 
A PCCF acts like an indirect basic event. It is a placeholder with a name and a 
description, but its actual failure data comes from a corresponding Actual Common 
Cause Failure (ACCF) defined at the system level (see section XYZ). 
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As with basic events, a PCCF name can consist of letters, numbers, and 
underscores, but must begin with a letter. They must also be unique. 
 

4.5. Output Deviation Editor 

 
The third tab allows editing of output deviations via the Output Deviation Editor: 
 

 

Figure 19: Output Deviation Editor 

 
As described previously, an output deviation relates the failures propagated from a 
component's output to a logical combination of propagated failures received at the 
inputs and any relevant internal failure modes of the component.  
 
The name of an output deviation consists of two parts, separated by a dash ( - ). The 
first part is the Failure Class and should be used consistently across the whole model 
for all failures of this type. A commonly used set of failure classes are: 
 

• Omission — A lack of output from the component port when expected 

• Commission — Output when not expected (e.g. due to a short circuit) 

• Value — A value failure, i.e., the output occurs when expected but the value 
is incorrect. 

 
These may often be abbreviated (e.g. O, C, V) but again it is important to be 
consistent: if "Omission" is used in one place, "omission" in another, and "O" in a 
third, HiP-HOPS will treat them all as separate failure classes, thus preventing them 
from propagating correctly. To ensure propagation, the failure class of an output 
deviation must match the corresponding failure class of the input deviation referred to 
in the next component. 
 



 
 

Using HiP-HOPS with Matlab Simulink 

 
Other failure classes can be defined as necessary. For example, Value may be 
further distinguished into Timing (or Early/Late) failures and direction (e.g. High/Low). 
In other cases it might be convenient to refer to specific parameters, e.g. 
HighPressure, LowVoltage etc. Again, you are welcome to define whichever failure 
classes you please, but for them to propagate from one component to the next, they 
must be used consistently. 
 
The second part of the name is the name of the port, which can be observed from the 
Simulink window.  
 
The description field is free for the user to record important information about the 
output deviation but has no effect on the HiP-HOPS analysis. 
 
The final field most certainly does, however. The Failure Expression is a Boolean 
logical expression that describes the causes of the output deviation. Operands can 
include input deviations (which follow the same naming convention as output 
deviations, i.e., FailureClass-PortName), basic events, and PCCFs. Note that for 

the expression to be valid, any basic events or PCCFs must be defined as described 
in the preceding sections. 
 
Operators include Boolean operators AND and OR (or * and + as shorthand) and 
round brackets/parentheses to define operator precedence (AND has higher 
precedence than OR). NOT (or ~ or !) is also a possible operator, but it is an unary 
operator (it takes only one parameter and binds to the operand to its immediate 
right). Note however that the inclusion of NOT will result in a non-coherent fault tree 
and incurs a performance penalty during analysis (see section 6.4 for more). 
 
The following are all valid expressions: 
 

• failure 

• failure OR omission-in1 

• (omission-in1 OR omission-in2) AND basicEvent OR pccf1 

• (omission-in1 or omission-in2) and basicEvent or pccf1 

• (omission-in1 + omission-in2) * basicEvent + pccf1 

• NOT omission-in1 AND failure 

 

  



 
 

Using HiP-HOPS with Matlab Simulink 

 

4.6. Exported Propagation Editor 

 
The fourth and final tab allows editing of exported propagations: 
 

 

Figure 20: Exported Propagation Editor 

 
An exported propagation is a type of output deviation that propagates to a 
component in a different perspective rather than via an output port. For this 
propagation to be meaningful, the current component must be allocated to another 
(see section XYZ). The target component can then receive propagations exported 
from this component. 
 
The interface is very much like the Output Deviation Editor and works in much the 
same way except for the name. An exported propagation is named much like a basic 
event, i.e., a combination of letters, numbers, and underscores, though it must begin 
with a letter. Notably, it must also be unique not just within the current component but 
across all components allocated to the target. 
 
The description field and failure expression are the same as for output deviations.  
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4.7. Component Editor 

 
Clicking on the "Edit component implementation data" button in the Launcher opens 
the Component Editor: 
 
 

 

Figure 21: Component Editor 

 
The above is the default form of the Component Editor and is primarily used to add or 
edit implementation information. Implementations are used to add variability during 
optimisation; the idea is that each component may be implemented in a number of 
different ways (e.g. by components from different manufacturers), each of which fulfil 
the same purpose while having differing failure characteristics. 
 
The list of implementations defined for a component are shown in the list at the 
bottom, along with buttons to Add, Edit, or Delete them. The current implementation 
is indicated by the "Current" suffix in brackets. Note that there is always at least one 
implementation added by default. The 'current' implementation is the one used by 
HiP-HOPS to perform its analysis, though optimisation will make use of all available 
implementations. 
 
You can optionally choose to exclude a component from optimisation using the check 
box, which can be useful for debugging purposes in that it temporarily reduces the 
size of the optimisation space without deleting any information. 
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A component may also define its own risk time (i.e., the time during which the 
component is at risk/may experience failures), which overrides the global risk time 
defined at the model-level. This may be used when the component has a different 
risk time to the rest of the system, e.g. because it is dormant part of the time or 
because it only runs intermittently. Basic events of this component will then use this 
risk time value for quantitative calculations instead. If left blank, the global value is 
used instead. 
 
Additionally, the Component Editor supports multi-perspective editing and common 
cause failures (CCFs). Top-level components can be turned into perspectives using 
the 'Type' drop-down menu, which results in a simpler version of the editor, as shown 
below. Components can also be allocated to a target component in another 
perspective using the allocations list, with associated buttons. The current allocation 
is indicated as 'Current' in brackets, like the current implementation. 
 
Note that only top-level components can become perspectives. If there at least 
one top-level component is a perspective, all top-level components must be set 
as perspectives. 
 
 

 

Figure 22: Component Editor for perspectives 

 
In this version of the interface, the only relevant information is the list of Actual 
Common Cause Failures (ACCFs) defined. Buttons are available to add/edit/delete 
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them as appropriate. The ACCF editor (opened by adding or editing an ACCF) is the 
same as the Basic Event Editor, described in section 4.3. 
 

4.8. Allocation Editor 

 
Adding or editing an allocation opens the Allocation Editor: 

 

Figure 23: Allocation Editor 

 
There are only two fields here. The first is the fully qualified name of the target 
component that this component should be allocated to. A fully qualified name is of 
the format perspective::subsystem.component and must include the perspective in 
this case. If multiple subsystems are involved, these are included as well, e.g. 
subsystem.subsubsystem.component. 
 
The second field is the check box to indicate which allocation is the current (default) 
allocation. Optimisation will use all available allocations but standard analysis will use 
only the current allocation. 
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4.9. Implementation Editor 

 
Adding or editing an implementation opens the Implementation Editor: 
 

 

Figure 24: Implementation Editor 

 
The name should follow the standard naming conventions, i.e., it can contain letters, 
numbers, and underscores, but should start with a letter and should be unique within 
its context — the component in this case.  
 
The description is primarily for user reference and plays no part in analysis or 
optimisation. 
 
Cost and weight allow parameterisation of this implementation for the purposes of 
optimisation and can be objectives of the optimisation process (e.g. to minimise cost 
and/or weight). Note that units are not specified, thus care must be taken to ensure 
that all costs/weights use consistent units across the model. 
 
The subsystem specification field is more complex. Two options are available here. 
The first option is "Use local definition", which means that all implementations use the 
subsystem currently defined in the Simulink model. In this case, the Subsystem 
model field and 'Browse' button are disabled: 
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The second option is to define a separate subsystem for each implementation. Since 
Simulink does not support this directly, we instead achieve this by having separate 
model files for each implementation. The Subsystem model field allows you to 
specify this subsystem model; clicking Browse will open up a file dialog where you 
can select the right file. 
 
Note that the path is stored relative to the current model path. Care should also be 
taken to ensure that the external model has the inputs and outputs to match those of 
the current component. 
 
Any implementation can be set as 'current', meaning it will be the default 
implementation used in a standard analysis. Only one implementation can be set as 
current at any time. 
 
Implementations can also be temporarily excluded from optimisation by checking the 
appropriate box. This can be useful for debugging purposes, since it excludes an 
implementation without deleting it. 
 
Additionally, every implementation can have its own specific failure data. The "Edit 
Failure Data" button opens the Failure Data editor, allowing you to specify the 
information for the implementation being edited. 
 

4.10. Model Parameters Editor 

 
The third button on the Launcher, "Edit model failure data", opens the HiP-HOPS 
Model Parameters Editor, shown below.  
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Figure 25: Model Parameters Editor 

 
This window allows editing of all the model-level parameters for the Simulink model.  
 
At the top is the global risk time value, which is used in qualitative calculations to 
estimate probability and unavailability. It can be thought of in most cases as the 
expected operating lifetime of the system. Note however that no units are provided, 
so care must be taken to be consistent. For example, if the risk time is in hours, then 
the failure rates for basic events must be specified in terms of failures/hour; if the risk 
time is in years, then the failure rates would be failures/year instead. 
 
Under this is the description field, which allows the user to input generic information 
about the overall system or model. 
 
Next is the hazards list. While hazards serve as the starting point for a HiP-HOPS 
analysis, and can be thought of here as system-level failures, they may themselves 
be the output of a separate hazard and risk assessment process. Buttons are 
available to add, edit, or remove hazards.  
 
Beneath the hazards are the optimisation parameters. These allows you to specify 
the maximum number of generations to run the optimisation for (generally, more 
generations yields better results but takes longer), as well as the objectives. Risk, 
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cost, and weight are the available objective types. For each objective, the goal 
(minimise or maximise) and the lower & upper bounds can be set. 
 
Finally, at the bottom are the output parameters that are passed to the HiP-HOPS 
executable. Ticking the "Decompose SILs" box will cause HiP-HOPS to attempt to 
decompose safety requirements. The "Output to Excel" box will cause HiP-HOPS to 
also output an Excel spreadsheet. The "Advanced Parameters" field allows you to 
enter more obscure parameters, which are described in section 7. 
 

4.11. Hazard Editor 

 
The final window is the Hazard Editor, which is opened when you add or edit a 
hazard.  
 

 

Figure 26: Hazard Editor 

 
The first field is the name, which follows the usual naming rules. This name becomes 
the name of the fault tree that HiP-HOPS generates for each hazard and also serves 
as the 'effect' in the resultant FMEA. 
 
The severity field is a custom numeric field where you can specify the severity for 
each hazard according to your own scale.  
 
The SIL field is where a safety integrity level (or industrial equivalent, e.g. ASIL or 
DAL) can be set. This is used during SIL decomposition, as HiP-HOPS will attempt to 
distribute this value across all component basic events that cause the hazard. 
 
The final field is the failure expression field, which contains a logical expression that 
specifies the cause of the current hazard. It is similar to the logical expression for 
output deviations except that the only permissible operands are output deviations 
and these must be referred to using fully qualified names. Operators are the usual 
Boolean operators (AND, OR, NOT) and brackets/parentheses may be added to 
override operator precedence. 
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4.12. Running HiP-HOPS 

 
Pressing the "Analyse model" or "Optimise model" buttons on the Launcher will pass 
the model to the HiP-HOPS engine to begin analysis or optimisation as appropriate.  
 
Note that you should save the model before doing this or any recent changes 
may not be recognised by HiP-HOPS. 
 
As HiP-HOPS runs, it will report status information to the Matlab command window: 
 

 

Figure 27: Example output to Matlab command window 

 
Any errors that occur will be reported here. 
 
Depending on the options set in the Model Parameters, the analysis output should 
open automatically in your default web browser. Other output types (e.g. Excel 
spreadsheets, optimisation output) must be opened manually by navigating to the 
output directory — which is typically the same location as the Simulink model, but 
which can also be read from the output in the Command Window.  
 
The HiP-HOPS output will be described in the following section. 
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5. HiP-HOPS Output 
 
HiP-HOPS produces a variety of output depending on the parameters set (see 
section 7). By default, HTML & JavaScript files are produced which are viewable in a 
web browser. An Excel spreadsheet may also be generated. Standalone XML files 
can also be produced.  
 
Standard HiP-HOPS output is generated in a sub-directory called <modelName>-
FMEAOutput, in the same directory as the Simulink model they were generated from. 
 

5.1. Web Browser Analysis Output 

 
The default output for a HiP-HOPS analysis is a collection of XML and HTML files 
viewable in a browser. There will be an index.html file in the root, which can be 
opened in the browser. Data is in the 'model' subdirectory in the form of JavaScript 
files, while the 'FTOutput' subdirectory contains the various standard files HiP-HOPS 
uses to render the result in the browser. 
 
The main index page looks like this: 
 

 

Figure 28: Analysis index page 

 
This page shows an overview of all the fault trees that have been generated, their 
estimated unavailability, their failure frequency, and the cut set totals. The list can 
also be sorted in both ascending or descending order by clicking the relevant link in 
the unavailability column. 
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5.1.1. Fault Tree Output 

Clicking on any of the fault tree names will open the fault tree view for that fault tree: 
 

 

Figure 29: Fault Tree view 

 
Here, the fault tree information is shown — its description, system unavailability & 
failure frequency, and the severity. Below are two tabs: one is a simple vertically-
oriented representation of the fault tree, showing all of the gates and basic events, 
while the other lists the cut sets. 
 
For the fault tree diagram, each node contains the fully qualified name of the node — 
its perspective, subsystem (if any), component, and either port or basic event. The 
number in brackets is the ID value assigned by HiP-HOPS and can be used to 
determine whether two nodes are identical or not; if they have the same ID, they are 
identical. 
 
Each node also has a symbol: 
 

 AND gate 

 OR gate 

 Basic event / Failure Mode 

 Circle node (circular logic has been detected and broken at this point) 

 Input deviation 

 Output deviation 

 Proxy/Intermediate node 

 Normal event (a non-failure event) 
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 Transfer node (references another location in the fault tree via ID) 
 
Some of these types of nodes may not be visible in all output modes. By default, 
HiP-HOPS will contract all fault trees by eliminating any redundant intermediate 
nodes (such as input/output deviations, proxy nodes, etc). This simplifies the fault 
tree and makes it much easier to read, but it also hides the full propagation 
information. Using the "-contract" argument tells HiP-HOPS to leave the full fault tree 
intact. 
 
An example is shown below: 
 

 

Figure 30: A contracted fault tree 
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Figure 31: (Part of) the uncontracted fault tree 

 
Both fault trees are logically equivalent and contain the same basic events (and the 
same IDs), but in the first tree the intermediate nodes have been stripped out for 
clarity. The second tree, however, makes it easier to see the propagation of failure 
through the model; for example, we can see how the SensorInput failure propagates 
from SensorInput.Out to StandbyRecovery.In and then to StandbyRecovery. 
Primary.In and so forth. 
 
The second tab displays the minimal cut sets in tabular form: 
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Figure 32: Fault tree cut sets table 

 
Each row of the table is a cut set. The constituent basic events are listed in the left-
most column. Unavailability and frequency is shown, if data is available for it to be 
calculated.  
 
Cut sets can be sorted by unavailability in ascending (default) or descending order, 
or by cut set order (i.e., how many basic events per cut set), by clicking the links in 
the table header. HiP-HOPS also paginates the cut sets for faster loading; by default, 
it displays 100 results per page, but this can be changed or switched off using the 
drop-down menu.  
 
Clicking on the cut set totals from the main page also opens this table directly, except 
filtered by order. Thus if you click the number of order 1 cut sets for a given fault tree, 
the table will only display the order 1 cut sets, and so on. 
 

5.1.2. FMEA Output 

The other form of output is the FMEA, accessible from any page by clicking 'FMEA' 
at the top. The FMEA displays a table showing each effect (i.e., hazard) caused by 
each component failure mode, bunched by component: 
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Figure 33: FMEA view 

 
Like the cut sets, this table is paginated for faster loading. Number of results per 
page is customisable via the drop-down menu. 
 
From left to right, the columns show: 
 

• The name and ID of the failure mode; 

• The list of system effects (hazards) it causes, which can be clicked on to view 
the corresponding fault tree; 

• The severity of the system effect; 

• Whether or not the failure mode is a single point of failure. 
 
The latter point is one of the unique features of HiP-HOPS, in that its FMEA shows 
not only single points of failure but also the effects of failure modes that must occur in 
conjunction. To view these "further effects", select either "Further Effects" or "Direct 
and Further Effects" from the first drop-down menu at the top. (By default, "Direct 
Effects" is selected, which only shows single points of failure; this is more in line with 
a typical FMEA and also reduces the number of results). 
 
A further effect has "false" in the rightmost column, since it does not cause the 
system-level effect by itself. To view the other contributing events, you can click on 
the effect and it will take you to the cut sets view for that fault tree, filtered to show 
only the cut sets containing that failure mode. 
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5.1.3. SIL Decomposition 

 
If SIL Decomposition mode was used (and SILs are available for decomposition), an 
additional link will appear at the top where you can view the safety allocations for the 
system. The table shows each identified allocation, displaying the total SIL cost 
(where 1 = cost 1, 2 = cost 10, 3 = cost 100, 4 = cost 1000), the number of invalid 
SILs (i.e., where it does not meet the requirements), and a link to view the system 
configuration. 
 

 

Figure 34: Safety Allocations view 

 
Clicking one of the configuration links on the right opens a treeview for that 
configuration, showing which SIL is assigned to each basic event: 
 

 

Figure 35: Configuration view 

 
The tree shows the model as the root, then the components, then all the basic events 
of each component, and finally the SIL assigned to each basic event. 
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5.1.4. Warnings and Errors 

Errors can arise for a number of reasons, but the most common is an incorrect name. 
Errors are reported in the Matlab command window. For example, an incorrect port 
name in an input deviation may result in an error like this: 
 
ERRORS: 1 

ERROR: Port StandbyRecovery.Standby.missing in component 

StandbyRecovery.Standby not found! [line number : 305] 

 

The information provided should be enough to diagnose and fix the error. In this 
case, there is an output deviation in the Standby component that refers to a port 
called "missing" which does not exist.  
 
The same can apply if an output deviation refers to a basic event that does not exist: 
 
ERRORS: 1  

ERROR: Basic event NoSuch is referred to in an output 

deviation but does not exist in component 

StandbyRecovery.Standby [line number : 305] 

 
It  is also possible to have non-critical errors which do not prevent analysis but which 
do raise warnings. These are listed in both the command window and in the browser 
results view, where a new "Warnings" link will appear at the top.  
 

 

Figure 36: Warnings in the output 

 
The most common form of warning is a contradiction. These can be caused by 
danging input deviations (input deviations with no corresponding output deviation) or 
via circular propagation logic in the model. 
 

5.1.5. Circular Logic 

HiP-HOPS will detect circular logic and will in most cases be able to handle it 
appropriately by severing the loop. In this case, it will insert a "circle node" at the 
point where the loop was severed, effectively unrolling the loop to its largest extent. 
This appears in the results as a special type of node: 
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Figure 37: Circular logic detected 

Sometimes this circular logic is expected and harmless, but it should always be 
checked if it is detected. In this case we can see more information by viewing the tree 
in uncontracted mode: 
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Figure 38: More circular logic (arrow added) 

 
Here we can see that one of the causes of Omission-StandbyRecovery.Standby.Out 
is itself, via input at port Monitor. This is also apparent from the model: 
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Figure 39: The circular model 

 
Clearly this is an artificial example, but more complex situations can arise where the 
circular propagation goes through many components before looping around. 
 
In some cases, the logic becomes too tangled for HiP-HOPS to continue — a so-
called "Crazy Loop". This can arise when a circular loop has multiple entry points for 
the same fault tree. To illustrate the issue, consider the following fault trees. 
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Figure 40: Complex Circular Loop 1 

 
In this case, we have a fault tree with two loops, one from a3.ctr1 to a2.ctr2, and one 
from a2.ctr1 to the top, a1.ctr2. Conceptually, we can think of this situation like so: 
 

 
 



 
 

HiP-HOPS Output 

 
And HiP-HOPS will correctly break these two loops and insert circle nodes 
accordingly: 
 

 
 
However, consider a more complex scenario: 
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Figure 41: Uh oh 

 
Again, we can conceptualise this tree as follows: 
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In this case, not only do we have multiple loops, but some of these loops have 
multiple entry points. The node labelled '1' is entered from both 2 and 4 (i.e., a2.ctr1 
and a4.ctr1), while node 3 is entered from both 2 and 4 as well. In fact, all four of 
these nodes can be reached by two others in circular fashion. 
 
The problem arises when we try to break these loops. Normally, we try to ensure the 
longest path length before each cut and inserted circle node. For example, if we 
traverse the network above from 1 → 2 → 3 → 2, we stop only when we loop back to 
2, resulting in a maximum length path of 1 → 2 → 3 → (C), where (C) is the inserted 
circle node. Similarly, 1 → 2 → 1 would become 1 → 2 → (C) and so forth. 
 
However, we can get non-deterministic results based on which path we follow first. 
Consider the maximum length path 1 → 2 → 3 → 4 → 3. In this case, we would cut 
only when we try to loop back to 3, i.e., we cut the link from 4 to 3 and get 1 → 2 → 3 
→ 4 → (C). So far so good, but now when we later follow the path 1 → 4 → 3 → 2 → 
1, we find it has already been cut and only get 1 → 4 → (C) — and fail to reach node 
3. 
 

 
 
If we had happened to go down the other route first, we would get a first path of 1 → 
4 → 3 → 2 → (C), but then  1 → 2 → (C). 
 
This occurs due to the way HiP-HOPS processes paths of propagation through the 
interconnected fault trees. Because there is no safe way of severing the loops, 
HiP-HOPS instead generates an error message in this situation and aborts the 
analysis process. The user is then advised to try to remove or simplify the circular 
logic and try again. 
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5.2. Spreadsheet Output 

 
If the option to generate an Excel spreadsheet has been selected, then HiP-HOPS 
will output an XML file in the same output directory that can be opened in Excel. The 
structure of the spreadsheet is very similar to the browser output and begins with an 
index sheet: 
 

 

Figure 42: Excel index sheet 

 
As usual, this displays the fault trees and the number of cut sets for each. The links 
are clickable and open either the FMEA tables or the fault tree sheets. 
 

 

Figure 43: FMEA Direct Effects 

 
The direct effects FMEA sheet shows all of the failure modes for each component 
and all the effects caused by that failure mode as a single point of failure, with 
severity if present. 
 

 

Figure 44: And FMEA Further Effects 

 
The further effects sheet is similar but also shows all of the contributing events that 
must also occur to acheve a given effect.  
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Clicking on either the sheet tab, the fault tree on the index page, or the effect on an 
FMEA page leads to the fault tree view: 
 

 

Figure 45: Fault Tree view 

 
There is no display of the fault tree itself, but its general information is displayed 
along with the list of the minimal cut sets, bunched by order. 
 

5.3. Optimisation Output 

 
Architectural optimisation results in browser output similar to the analysis output, 
except it shows the possible optimal system configurations that have been found. 
These are generated to a different directory, <model name>-OptimisationResults. 
The results show the various configurations along with their scores for each chosen 
objective (cost, weight, unavailability etc). Because it is a multi-objective optimisation, 
there is no single optimal solution, but all solutions should be pareto-optimal, i.e., 
they all represent trade-offs between the different objectives that are not worse than 
any of the other solutions generated. 
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Figure 46: Optimisation output 

In the final column is a hyperlink which shows the configuration of the model required 
to achieve the individual result. Following this hyperlink will display the model 
configuration in a tree format as in Figure 47. 
 

 

Figure 47: Solution configuration 

Each configurable component in the model is listed along with the implementations 
required. 
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6. HiP-HOPS Tutorials 
 
In this section, we will explain how to perform various common tasks by working 
through some tutorials. These will cover: 
 

• How to create, annotate, and analyse a simple Standby-Recovery model 

• Updating the Standby-Recovery model to be hierarchical 

• How to use common cause failures 

• How to use multi-perspective modelling and allocation 

• How to create a model for SIL decomposition 

• How to create an optimisation model 
 
Each of the tutorials has an accompanying model file showing the final result in the 
"Examples" subdirectory of your HiP-HOPS installation. You can either work 
alongside the tutorial to recreate the model or load up the finished example to 
compare against. 
 

6.1. Tutorial 1: Analysing a simple model 

 
For the first tutorial, we will create a model of a simple standby-recovery system like 
the one described in section 2. 
 

6.1.1. Creating the model 

First, create a new, blank Simulink model (select "New" from the Home menu, select 
New Simulink Model, then choose a Blank model). The first step is typically to create 
the components and their ports before doing any annotation of failure data. For this, 
we need three components like so (you can just use the standard subsystem block): 
 

 

Figure 48: Model for Standby-Recovery tutorial 
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You will need to remove the input port from SensorInput and add a new one to 
Standby. To create the second branch from SensorInput to Standby, start from the 
SensorIn port and drag backwards. 
 
Note that it is necessary to remove the automatic input-output connections that 
Simulink adds in the subsystem level for each level, otherwise this adds a new 
channel for propagation straight through each component. 
 
The idea here is that we have a sensor that provides input to the system, then two 
redundant components that perform some calculation using that sensor input and 
provide output. By default, the system uses the Primary component, but a Standby 
component monitors the output of Primary and takes over if no output is detected. 
Note that other configurations are also possible, e.g. using a comparator or a voter, 
but here we will keep things simple. 
 

6.1.2. Annotating the model 

The next step is to begin annotating each component with failure data that describes 
how it fails and responds to failure. If you have not already opened the HiP-HOPS 
launcher, do so by typing hiphops into the command window. Then, select the 

SensorInput component and press the 'Edit component failure data' button on the 
Launcher. 
 
The data we want to add to each component is listed in the tables below. 
 

Component Failure Modes Failure Rate 

SensorInput sensorFailure 0.0005 

Primary calculationFailure 0.0002 

Standby calculationFailure 0.0002 

Table 3: Failure modes for Standby-Recovery tutorial 

 

Component Output Deviations Failure Expression 

SensorInput Omission-SensorOut sensorFailure 

Primary Omission-DataOut calculationFailure OR 
Omission-SensorIn 

Standby Omission-DataOut (calculationFailure OR 
Omission-SensorIn) AND 

Omission-Monitor 

Table 4: Output Deviations for Standby-Recovery tutorial 

 
The logic here is relatively straightforward:  
 

• We get an omission of output from the sensor if the sensor suffers a failure; 

• We get an omission of data from the Primary if either there is a calculation 
failure or if the Primary does not receive any input; 
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• We get an omission of data from the Standby if it has activated (i.e., no input 
received at the monitoring port) and if either there is no input or if the Standby 
also suffers from a calculation failure. 

 
To begin with, we need to add a new basic event to the SensorInput component and 
add the information above. We use the "Constant Failure & Repair Rate" formula and 
set the failure rate to 0.05. 
 

 

Figure 49: SensorInput failure data 

 
Remember to press Save and Close. 
 
Next we add an Output Deviation (switch to the Output Deviations tab and press 
'Add'). Here we specify the name, which consists of the failure class — Omission in 

this case — and the port name, SensorOut. Note that here we do not need to fully 

qualify the port name; HiP-HOPS understands that this port belongs to the current 
component.  
 
The failure expression is very simple, since there is no input port and only one basic 
event.  
 



 
 

HiP-HOPS Tutorials 

 

 

Figure 50: Output Deviation for SensorInput component 

 
Repeat the process for the other two components, using the appropriate data from 
the tables above. Remember to select each component before pressing the 'Edit  
component's failure data' button. The output deviation for Standby should look like 
this: 
 

 

Figure 51: And for the Standby component 

 
Again, remember also to press 'Save and Close' each time. 
 
The final step of the annotations is to edit the model-level failure data. From the 
Launcher, press the 'Edit model failure data' button.  



 
 

HiP-HOPS Tutorials 

 
First, add a new hazard and fill it out like so: 
 

 

Figure 52: Hazard for Standby-Recovery system 

 
Here we define just one hazard, a failure to calculate a value from the sensor input. 
We've kept things abstract, so the effects of this are unclear, but e.g. if the system 
was meant to calculate a distance to an obstacle for a vehicle, failure could lead to 
the vehicle crashing. Hence we give it a relatively high severity value of 8. 
 
The failure expression should be a conjunction of output from both Primary and 
Standby. Note that in this case the output deviations must be fully qualified, as we 
are working at the model level now, not at component level. 
 
On the main model parameters window, set the risk time to 100 and add a 
description if you like. Then press Save and Close again. 
 

6.1.3. Analysing the model and viewing the output 

We should now be ready to analyse the model. Before doing so, make sure to save 
the model in Simulink as well. Press the save button (you will probably need to 
give it a filename too). 
 
Once done, press 'Analyse model' on the Launcher. 
 
If all went well, you should see some text in the Matlab Command Window indicating 
that HiP-HOPS was running and then the output should open up automatically in 
your browser. Since we only defined one hazard, we only get one fault tree: 
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Figure 53: Output for tutorial 1 

 
If we switch to the minimal cut sets, we see we only have two: 
 

• A failure of the SensorInput (sensorFailure) 

• A failure of both Primary and Standby (both calculationFailure) 
 
This is what we would expect. The SensorInput is a single point of failure, since it is a 
common input to both Primary and Standby; without its output, the system cannot 
function. However, because we have redundancy in the calculation, it requires both 
Primary and Standby to fail to cause a calculation failure. 
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Figure 54: Minimal cut sets 

 
Because we also provided quantitative failure data, we get estimates for the 
unavailability and frequency for both the cut sets and the fault tree as a whole. This 
follows the formulae set out earlier. For example, we calculate the unavailability of a 
basic event using the Constant Failure & Repair Rate formula: 
 

)1( )( teu 



 +−−
+

=  

 
Since the repair rate is 0, this is equal to 1 – e –(failureRate * t). t is the global risk time, 
since we did not specify a different risk time for any component. So for the sensor, 
this value is: 
 
 1 – e ^ -(0.0005 * 100) = 0.0487706 
 
and for the Primary and Standby: 
 
 1 – e ^ -(0.0002 * 100) = 0.0198013 
 
For the SensorInput cut set, since there is only one basic event, the unavailability is 
unchanged. For the other cut set, we multiply them together since they are 
connected via an AND relationship, which gives us 0.0003921. 
 
Then to calculate the unavailability for the fault tree, we must apply the Esary-
Proschan formula: 
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𝑄𝑆 = 1 −  ∏(1 − 𝑄𝐶𝑆𝑖
)

𝑛

𝑖=1

 

 
where Qs is the unavailability of the system and Qcs is the unavailability of each cut 
set. In this case, this is equivalent to: 
 
  1 – (1 – 0.0487706) * (1 – 0.0003921) 
 = 1 – (0.9512294 * 0.9996079) 
 = 1 – 0.9508565 
 = 0.0491435 
  
Fortunately, HiP-HOPS does all of this for us. It also calculates the failure frequency 
as well. 
 
Hopefully this first tutorial explains the basics of how to create and annotate a system 
model for analysis with HiP-HOPS. 
 

6.2. Tutorial 2: Hierarchical models 

 
For the second tutorial, we will modify the standby-recovery system from Tutorial 1 to 
be hierarchical and introduce failures at the subsystem level.  
 

6.2.1. Creating the model 

Create a new, blank Simulink model and add a new component at the top level. Then 
copy the SensorInput component from the first Tutorial and connect them like so: 
 

 

Figure 55: Making it hierarchical 

 
Because the failure annotations are stored as extra data within each component (or 
model), copying a component also copies the failure data, saving us from having to 
annotate it again. 
 
In this case, we want to make the StandbyRecovery function its own subsystem. By 
doing so, we can more easily reuse it elsewhere, e.g. in another model, if we wanted 
to. So far we have added the top-level subsystem, so the next step is to copy the 
Primary and Standby components in as subcomponents of this block (double click on 
StandbyRecovery to open the subsystem level). 
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However, we have a slight problem: we can connect the SensorIn port to the two 
subcomponent inputs, but how do we connect the two subcomponent outputs to the 
parent DataOut output? Matlab allows an output port to connect to multiple inputs, 
but not multiple outputs to a single input (or output in this case).  
 
The workaround is to add a dummy "Joiner" component with two inputs and one 
output. This is not a "real" component and does not have its own basic events; it 
serves only to host the logic that joins the outputs together. 
 
When you are finished, it should look something like this: 
 

 

Figure 56: The StandbyRecovery subsystem 

 
You will need to define a new output deviation in Joiner like so: 
 

• Omission-Out1 = Omission-In1 AND Omission-In2 
 

6.2.2. Adding failures at the subsystem level 

Before we move on to analysis, we will add something else new. Exit the subsystem 
level and return to the top level and select the StandbyRecovery subsystem block. 
Here we can choose to select how it propagates failure; we could e.g. specify that it 
only propagates deviations from its subcomponents by selecting "Defined in the 
subsystem only" from the drop-down menu at the bottom, but for now we will leave it 
as "Defined here and in the subsystem". 
 
This is because we want to add a new basic event that applies to the subsystem as a 
whole: EMI.  
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Figure 57: The EMI basic event 

 
This functions like a limited common cause failure. We could achieve the same effect 
by adding an EMI basic event to all subcomponents (Primary and Standby), but it is 
more expedient to add it once to the subsystem instead. We then define a new 
output deviation that uses it: 
 

• Omission-DataOut = EMI 
 
and then save and close. 
 
Note that we now have two separate output deviations that both propagate to 
StandbyRecovery.DataOut: the one in StandbyRecovery.Joiner and the one in 
StandbyRecovery itself. The drop-down menu mentioned earlier tells HiP-HOPS 
which of these output deviations to use. Since we chose to use both in this case, it 
will join them together using an implicit OR. 
 
The last step is to add the hazard and risk time in the Model Parameters editor. 
Unfortunately these cannot simply be copied across but we can reuse the same data. 
Since we have added the AND logic to the Joiner, we do not need it for the hazard 
and can just refer to the output port of the StandbyRecovery subsystem: 
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Figure 58: Hazard for tutorial 2 

 

6.2.3. Analysis Results 

Once done, make sure to save the model in Simulink and press Analyse model. If all 
went well, the results will appear. 
 

 

Figure 59: Tutorial 2 results 

 
As we would expect, the results are similar to before. The SensorInput failure is 
exactly the same and the Primary + Standby calculation failure is also the same, 
except now the names indicate these are subcomponents of the StandbyRecovery 
block. The difference is that we now have a third minimal cut set for EMI, which also 
increases the overall system unavailability. 



 
 

HiP-HOPS Tutorials 

 
 
You can see how HiP-HOPS has joined the output deviations at different hierarchical 
levels by looking at the fault tree structure: 
 

 

Figure 60: The fault tree 

 
Because EMI is a direct cause of Omission-DataOut (the cause of the hazard), it 
appears right under the top event. SensorInput.sensorFailure is also a single point of 
failure but occurs three times in the tree: once as a cause of Omission-
Standby.SensorIn, once as a cause of Omission-Primary.SensorIn, and once as an 
indirect cause of Omission-Standby.Monitor (via Primary). These three events all 
have the same ID, indicating they're the same, so HiP-HOPS minimises them 
accordingly. 
 
Hopefully this tutorial has demonstrated how subsystems can be used to create 
hierarchical models that can be used with HiP-HOPS. Not only does this reduce 
clutter by separating out related components into logical subsystems, it also allows 
us to define basic events at the subsystem level that effectively apply as local 
common cause failures to all subcomponents in that subsystem. 
 

6.3. Tutorial 3: Common Cause Failures 

 
For the third tutorial, we will again modify the standby-recovery system — this time to 
include a perspective and a common cause failure. A perspective is like a modelling 
view or layer, a way of grouping together components on a more abstract level. 
Perspectives also provide a home for common cause failures, which is what we will 
achieve in this tutorial. 
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6.3.1. Creating the model 

Create a new, blank Simulink model and add a new component at the top level called 
'Hardware'. Make sure it has no input or output ports. Then copy both the 
SensorInput and StandbyRecovery components from Tutorial 2 inside it as 
subcomponents. 
 
It should result in a very simple topmost layer: 
 

 

Figure 61: Introducing perspectives 

 
As far as Simulink is concerned, this is simply a subsystem component with two 
subcomponents and no inputs or outputs — and at first the same is true for 
HiP-HOPS. To get HiP-HOPS to treat it as a perspective, we need to use the second 
button on the launcher to open the Component Editor. Then in the Type drop-down 
menu at the top, select 'Perspective'. This changes it from a normal component to a 
perspective as far as HiP-HOPS is concerned. 
 
Perspectives are merely containers. They do not have any failure logic of their own 
except for common cause failures. 
 

6.3.2. Adding a common cause failure 

When we changed the component to a perspective, the previous fields were replaced 
by a list of Actual Common Cause Failures. 
 
HiP-HOPS splits common cause failures (CCFs) into two types: Actual CCFs (or 
ACCFs) and Potential CCFs (or PCCFs). The idea is that PCCFs are defined in 
component failure logic as proxies or placeholders. They become part of the logic but 
are effectively dormant unless paired with a corresponding ACCF. The main reason 
for this is reuse: we can reuse (i.e., copy and paste) a component with a PCCF 
defined without any problem, since the PCCF is defined as part of the component, 
whereas if we had a direct reference to an ACCF, it would break every time we tried 
to use it elsewhere, since the ACCF is defined in the perspective. 
 
The solution is therefore to have PCCFs defined in the component failure data and 
match them with an Actual CCF when we want them to become 'active'. 
 
This approach to CCFs has several benefits. For example, we can define a 
"waterIngress" PCCF for various components we expect to be used aboard a ship. 
Then when creating a model of the ship systems, we can define ACCFs that indicate 
flooding of different compartments — engine room, generator room, control room etc. 
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Then we connect up the component PCCFs to ACCFs depending on which room 
they're in. If we "move" a component to a different room, all we need to do is change 
which ACCF it references. 
 
If that sounds complicated, fear not: using CCFs in HiP-HOPS is quite easy. First, we 
can add the ACCF to the perspective. In this case, we will make it a power failure 
CCF. It is often convenient to make power failure a CCF as this saves us connecting 
everything with power lines and propagating power failures throughout the entire 
model. 
 

 

Figure 62: Adding the ACCF 

 
The next step is to add PCCFs to our subcomponents, SensorInput and 
StandbyRecovery. PCCFs are defined in the Component Failure Data Editor like 
Basic Events (2nd tab). 
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Figure 63: Defining the PCCFs 

 
We can use the same name for both (powerFailure). For the corresponding 

ACCF, we specify powerFailureCCF. We also need to update the output 

deviations to include them: 
 

• For SensorInput:   SensorFailure OR powerFailure 

• For StandbyRecovery:  EMI OR powerFailure 
 

After that, set the model parameters (risk time = 100, CalculationFailure hazard = 
Omission-Hardware::StandbyRecovery.DataOut), then save and analyse the model. 
 

6.3.3. Analysis Results 

With luck, the analysis should have succeeded and you will see results similar to 
those below: 

 

Figure 64: CCF analysis results 
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This time we get another new basic event, the PowerFailureCCF common cause 
failure. It acts just like any other basic event here, but if we view the fault tree, we can 
see how it appears: 
 

 

Figure 65: CCF fault tree 

 
Here we can see the PCCFs appearing as proxy nodes (a circle with a dotted arrow 
through it), each with the ACCF (ID# 11) as the sole cause.  
 
Hopefully this tutorial has shown you how you can create a perspective at the top 
level of your model and use it to specify common cause failures that can be 
referenced from any component in that perspective. 
 
In the next tutorial, we will expand on the perspective concept to perform multi-
perspective modelling and analysis. 
 

6.4. Tutorial 4: NOT gates and non-coherent fault trees 

 



 
 

HiP-HOPS Tutorials 

 
For the fourth tutorial, we will look at how to use NOT gates and what that means for 
the fault tree analysis. We will also make use of multiple types of deviations this time. 
 

6.4.1. Creating the system model 

The system is going to be a very simple one. We need three components like so: 
 
 

 

Figure 66: Tutorial 4 system model 

 
The two sensors are identical and each have two basic events that lead to one of two 
classes of output deviation: 
 

• An omission failure, i.e. an omission of expected output, is caused by an 
internal sensorFailure 

• A value failure, i.e. output is present but incorrect in some way, is caused by 
an internal sensorError 

 
The processor is meant to take the data from the two sensors and perform some 
calculation with it. It is intended to be resilient to value deviations and fail silent where 
possible, thereby transforming value failures (which are harder to detect and deal 
with) into omission failures (which are generally less severe). For example, the 
processor may be intended to send instructions to a hazardous piece of machinery, 
where no action is less severe than incorrect action (e.g. doing something before 
people have moved to a safe distance, outside the safety envelope). 
 
However, the processor is also meant to continue operation in the case where one 
sensor has failed, and so there is a limit to how resilient it can be in the face of an 
omission of one input. 
 

6.4.2. Failure logic 

To model the processor logic correctly, we need to look at the possible combinations 
of input deviations and their effect on the output, where O = omission, V = value, and 
N = normal (i.e., no failure). 
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In1 In2 Out1 Notes 

N N N All inputs nominal 

N V O Inputs differ, so output nothing 

V N O Inputs differ, so output nothing 

V V O Inputs differ, so output nothing 

O N N Ignore one missing input and use the other 

N O N Ignore one missing input and use the other 

O O O Both inputs are missing, so no output possible 

O V V The only available input is incorrect = value deviation 

V O V The only available input is incorrect = value deviation 

 
Here we can see the logic more clearly. If the inputs differ (due to value deviations), 
then the processor will choose to output nothing rather than risk outputting an 
incorrect value. However, if one input is missing (due to an omission), it will be forced 
to use the sole remaining input, even if it is incorrect. 
 
The difficulty here is in distinguishing between different cases. For example, where 
there is an omission of input 1, the outcome depends on the state of input 2: 
 

• Value-In2 results in a value deviation (the only input is in error) 

• Omission-In2 results in an omission (no inputs available) 

• No deviation of In2 results in no deviation of the output (the sole input is 
correct and can be used normally) 

 
To describe this in logical expressions, NOT gates are required: 
 

• Omission-In1 AND Value-In2 AND ~Omission-In2 

• Omission-In1 AND ~Value-In2 AND Omission-In2 

• Omission-In1 AND ~Value-In2 AND ~Omission-In2 
 
The failure logic for the processor is therefore as follows: 
 
Value-Out1 
(Value-In1 AND Omission-In2) OR (Omission-In1 AND Value-In2) 

OR processorError 

 
Omission-Out1 
(NOT Omission-In1 AND Value-In2) OR (Value-In1 AND NOT 

Omission-In2) OR (Value-In1 AND Value-In2) OR (Omission-In1 

AND Omission-In2) OR processorFailure 

 
In other words, if there is one omission and one value deviation at the inputs, or 
processorError occurs, we get a value deviation of the output. If one input 

suffers a value deviation and the other is not omitted, we get an omission — as we 
do if both inputs suffer value deviations, both inputs are omitted, or if the processor 
itself fails. 
 
The hazards are then very simple: 
 

• NoOutput = Omission-Processor.Out1 
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• ErroneousOutput = Value-Processor.Out1 
 

6.4.3. Analysis & Results 

For this model, we get 3 minimal cut sets for ErroneousOutput: 
 

 

Figure 67: Results for ErroneousOutput 

 
which fits with what we would expect, namely that a single omission (caused by 
sensorFailure) and a single value failure (caused by sensorError) will lead to the 
processor being unable to compare inputs and being forced to trust the remaining 
input. Processor error is also a single point of failure for this hazard. 
 
For NoOutput, we get 5 cut sets: 
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Figure 68: And for NoOutput 

 
Here the results are more complex because we also have complement events, i.e., 
the negation of a failure mode. Again, processor failure is a single point of failure (if it 
stops operating, there is no output). The remaining four cases are as follows: 
 

• Value failures from both sensors means both inputs are different and the 
processor cannot trust either, so it outputs nothing. 

• A value failure from sensor 1 and normal (non-deviated) input from sensor 2 
also means both inputs are different; the processor does not know which is 
correct, so it outputs nothing. 

• An omission from both sensors due to simultaneous sensor failure means the 
processor has no input to work with. 
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• Again, a single value failure and normal (non-deviated) input means the 
processor cannot distinguish correct from incorrect and it outputs nothing. 

 
The presence of NOT gates and complement events complicates the analysis 
because it results in a non-coherent fault tree, where both the presence and absence 
of basic events must be considered. As explained previously, this manifests in the 
Consensus Law: 
 

• (X . Y) + (~X . Z) = (X . Y) + (~X . Z) + (Y . Z) 
 
Although this example is relatively simple, meaning the analysis is very fast, in 
general the application of the Consensus Law slows down the HiP-HOPS analysis 
dramatically because it must generate new cut sets to test for redundancy. For 
example, consider a case where we initially have three cut sets like so: 
 

• X . Y 

• ~X . Z 

• Y . W . Z 
 
At first glance, there is no redundancy and so we might be tempted to assume these 
are all minimal cut sets. However, application of the Consensus Law reveals the 
fourth implicit cut set: 
 

• X . Y 

• ~X . Z 

• Y . W . Z 

• → Y . Z 
 
which in turn means the third cut set is redundant. The newly generated cut set is 
also redundant (since it is implicit in the first two) and so our final minimal cut sets are 
just: 
 

• X . Y 

• ~X . Z 

• Y . W . Z 

• → Y . Z 
 
The difficulty comes from the fact that implicit cut sets generated by the Consensus 
Law may themselves generate more cut sets using the Consensus Law, e.g.: 
 

• X . Y 

• ~X . Z 

• ~Y . W 

• → W . X (From X.Y + ~Y.W) 

• → Y . Z (From X.Y + ~X.Z) 

• → → W . Z (From Y.Z + ~Y.W or ~X.Z + W.X) 
 
Each of the resultant cut sets must then be checked against every other cut set for 
potential redundancy, which is slow.  
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Consequently, it is recommended to be sparing with NOT gates and complement 
events and use them only where necessary to avoid the significant performance 
penalty of non-coherent fault tree analysis. 
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6.5. Tutorial 5: SIL Decomposition 

 
For the fifth tutorial, we will take a more substantial pre-existing model and look at 
how it can be used to perform automatic SIL decomposition. This model is a 
simplified version of the one described on the HiP-HOPS website at https://hip-
hops.co.uk/page/how_it_works/. 
 

6.5.1. The system model 

The system model (tutorial5_silDecomposition.slx) is for a hybrid braking 

system (HBS) for an electric vehicle, which combines both a frictional 
electromechanical brake (EMB) and an electric in-wheel motor (IWM). The model is 
shown below. 
 

 

Figure 69: Tutorial 5 model — the hybrid braking system 

 
This system is a brake-by-wire system, meaning there is no direct hydraulic link 
between the brake pedal and the wheel brake. Instead, a redundant system of two 
electronic buses and a controller is used to pass instructions from the pedal unit to 
the two brake controllers. Because the in-wheel motors work as generators during 
braking, converting kinetic energy into electrical energy, the brakes can also be used 
to help recharge the battery and increase the range of the vehicle. 
 
Although only one wheel braking subsystem is used in the model, in the full version, 
all four wheels and their braking units would be represented. In the full system, the 
driver’s action on the mechanical pedal is sensed and processed at an electronic 
pedal unit. The latter acts as a central control unit that coordinates the four local 
wheel controllers according to the driver’s braking intentions. All the wheel node 
braking units are interconnected through a digital communication network with two 
parallel buses. After receiving the braking force demand for the wheel it is 
responsible for, every local wheel controller calculates the amount of torque to be 
developed by each actuator and then controls them accordingly through power 
electronics. When braking is taking place, power flows from the low voltage battery 
(auxiliary battery) to the EMB and from the IWM to the high voltage battery 
(powertrain battery). The haptic feedback that should be provided to the driver 
according the braking action is neglected in this model. 
 

https://hip-hops.co.uk/page/how_it_works/
https://hip-hops.co.uk/page/how_it_works/


 
 

HiP-HOPS Tutorials 

 

6.5.2. Failure data annotations 

The failure behaviour of the HBS architecture is described next.  
 
At the model level, for the purposes of this example only two hazards are considered: 
 

• No braking after command (H1) 

• Wrong value braking (H2) 
 
An omission of braking hazard (H1) occurs when both the in-wheel motor and the 
electromechanical brake fail to produce any braking force. A value braking hazard 
(H2) occurs when either of the two braking devices brakes with an incorrect value 
(e.g. too high or too low). This results in the following failure expressions: 
 

Hazard Causes 

H1 Omission-EMB.out1 AND Omission-IWM.out1 

H2 Value-EMB.out1 OR Value-IWM.out1 

 
Next, we look at the local failure annotations for each component. For the electronic 
pedal, there are two outputs (each connected to a different bus) and each one may 
suffer from either an omission failure or a value failure. We do not refine the causes 
of these in depth at this stage, assuming that the detailed knowledge of the unit's 
implementation is not available (e.g. because it is still early in the design process). 
Instead, we model this as four basic events, each causing one output deviation. 
 

Output Deviation Causes 

Omission-Out1 OFailure1 

Omission-Out2 OFailure2 

Value-Out1 VFailure1 

Value-Out2 VFailure2 

 
The communication buses are considered to have only internal failures of the 
omission type due to the use of the TTP/C protocol: in the presence of other types of 
faults, such as a value failure caused by EMI interference, a Cyclic Redundancy 
Check (CRC) mechanism is responsible for discarding the message, ensuring fail-
silent behaviour. Further, omission of the output of each bus can also be caused by 
the omission of its two inputs. 
 
Failures may also be propagated to the bus as input as well as originating internally. 
In such cases, the bus would typically propagate the failure from its output. Here, 
however, two communications controllers are used, which provides a measure of 
redundancy and makes more checking possible. Therefore the buses' outputs will 
only suffer a value deviation if the output of the leading controller is deviated or if the 
leading controller outputs nothing and the replica controller outputs a deviated signal. 
The leading controller in this case is the element whose information is considered 
first (and thus takes priority). Thus for each bus we have the following expressions: 
 

Output Deviation Causes 

Omission-Out1 OFailure1 OR (Omission-In1 AND Omission-In2) 

Value-Out1 Value-In1 OR (Omission-In1 AND Value-In2) 
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Both types of failure are also possible deviations of the wheel node controller 
outputs. As mentioned, we do not investigate the internal faults in depth and define 
one basic event for each output deviation. Furthermore, wrong value outputs can 
also be triggered by value deviation transmitted by the leading bus or by the omission 
of that same output and value deviation of the output of the replica bus. Omission of 
both outputs can also be caused by omission of both buses' outputs.  
 

Output Deviation Causes 

Omission-Out1 OFailure1 or (Omission-In1 and Omission-In2) 

Omission-Out2 OFailure2 or (Omission-In1 and Omission-In2) 

Value-Out1 VFailure1 or Value-In1 or (Omission-In1 and Value-In2) 

Value-Out2 VFailure2 or Value-In1 or (Omission-In1 and Value-In2) 

 
The battery is relatively simple. Here we do not consider value failures at all, only an 
omission of power, which is caused solely by a fault of the battery itself.  
 
For the EMB power converter, deviations of either type are propagated from either 
input or caused by corresponding internal failure modes. However, since there are no 
value failures from the battery power connection, this input is irrelevant for value 
deviations. 
 

Output Deviation Causes 

Omission-Out1 OFailure1 or Omission-In1 or Omission-In2 

Value-Out1 VFailure1 or Value-In1 

 
The IWM power converter is somewhat more complicated because it has both a 
regenerative braking power connection to the battery for recharging (Out1) and the 
output to the IWM itself (Out2). In both cases, there are internal failure modes that 
can cause deviations. Omission of power to the battery (Out1) can be caused by the 
omission failure mode, omission of input signal, or omission of regenerative power 
from the IWM; omission of signal to the IWM is caused only by omission of input 
signal or internal failure. 
 
For value deviations, the situation is similar. Value failures at either input are 
propagated from Out1, but only a deviated input signal from the wheel controller is 
propagated to Out2.  
 

Output Deviation Causes 

Omission-Out1 Omission-In1 or OFailure1 or Omission-In2 

Omission-Out2 Omission-In1 or OFailure1 

Value-Out1 Value-In1 or Value-In2 or VFailure1 

Value-Out2 Value-In1 or VFailure1 

 
The two braking units are straightforward. The EMB propagates any input deviation 
to its output and may also suffer from internal failure modes. The IWM likewise 
propagates any input deviation to its outputs, with the exception that value failures 
are not propagated from the regenerative power connection to the IWM power 
converter. 
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6.5.3. SIL Decomposition 

Setting up the model for SIL decomposition is surprisingly easy. The first step is 
simply to assign appropriate SILs to each hazard. The type of SIL and its 
corresponding semantics will depend on the domain; in this case, as an electric car, 
ASILs (Automotive Safety Integrity Levels) would be used. For aircraft, DALs would 
be used instead. For other systems, standard SILs or some other measure may be 
used. 
 
For ASILs, there are 4 levels of stringency, ranging from A (least strict) to D (most 
strict), with an additional level of QM meaning "Quality Management only", i.e., no 
special safety requirement applies. We can translate this into integers for HiP-HOPS 
quite simply: 
 

ASIL QM A B C D 

Value 0 1 2 3 4 

 
Here we assume that an omission of braking (Hazard H1) is much more severe and 
assign it ASIL D (i.e., a value of 4).  
 

 

Figure 70: Assigning an ASIL to a hazard 

 
For hazard H2, we assume that a deviation in braking value is less severe than no 
braking at all, and assign ASIL A (i.e., a value of 1). Naturally, for a real system, a full 
ISO 26262 compliant risk assessment would be undertaken to derive appropriate 
ASIL values for each hazard. 
 
The last step is to provide parameters for the decomposition process, namely a cost 
heuristic. HiP-HOPS uses a default cost heuristic that increases by 10 for each level 
of severity (i.e., SIL value * 10). However, for ASILs, it is more common that there is 
a cost jump between ASIL B and ASIL C, so we add the following heuristic using the 
"asilCostHeuristic" parameter: 
 

ASIL QM A B C D 

Cost 0 10 20 40 50 
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We also need to tick the 'Decompose SILs' box to instruct HiP-HOPS to perform 
decomposition. 
 

 

Figure 71: Model parameters for ASIL decomposition 

 

6.5.4. Results 

This time, when we press 'Analyse model', in addition to the normal analysis results 
we also get the results of the SIL decomposition optimisation process. This can be 
seen in two places: in the Matlab command window, where the ASIL (or DAL) 
decomposition process will be shown, and also in the browser results (SIL 
decomposition is not available in spreadsheet form at this time). 
 
The SIL decomposition results are visible by selecting "Safety Allocations" from the 
top of the HiP-HOPS output. This displays a list of all allocations found, along with 
their total cost and a link to view the individual allocation. 
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Figure 72: Safety Allocations 

 
HiP-HOPS will attempt to allocate an appropriate SIL to each basic event that causes 
each hazard. Thus if there is only a single cause of a hazard, that basic event 
receives the full SIL value assigned to that hazard. If there are multiple causes linked 
in an independent AND configuration, then a range of values becomes possible 
depending on the semantics of the SIL, e.g. for ASILs, the ASILs of the constituent 
causes simply need to add up to the hazard ASIL: 
 

Cause 1 Cause 2 Total (= Hazard) 

QM (0) ASIL D(4) 0 + 4 = 4 

ASIL A (1) ASIL C (3) 1 + 3 = 4 

ASIL B (2) ASIL B (2) 2 + 2 = 4 

ASIL C (3) ASIL A (1) 3 + 1 = 4 

ASIL D (4) QM (0) 4 + 0 = 4 

 
The situation is complicated where a given basic event contributes to more than one 
hazard. Decomposition may reveal that the event receives e.g. ASIL C from one 
hazard but ASIL A from another; in such a case, the highest value is used, but may 
mean that this particular configuration is strictly worse than some other configuration. 
For example, consider a scenario with two events, E1 and E2, which contribute to 
two hazards, H1 (ASIL D) and H2 (ASIL B) like so: 
 

• H1 is caused by E1 AND E2 

• H2 is caused only by E2 
 
From the table above, we can see that there are five possible allocations for two 
events causing a hazard with ASIL D, each adding up to 4 in total. However, because 
E2 is the sole cause of H2, it can never be allocated an ASIL less than that of H2, 
i.e., E2 must have a minimum ASIL of B (i.e., 2). This yields the following: 
 

E1 E2 Total (= Hazard) 

QM (0) ASIL D(4) 0 + 4 = 4 

ASIL A (1) ASIL C (3) 1 + 3 = 4 

ASIL B (2) ASIL B (2) 2 + 2 = 4 

ASIL C (3) ASIL B (2) 3 + 2 = 5 

ASIL D (4) ASIL B (2) 4 + 2 = 6 
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Here we can see that the last two possible configurations have a higher cost than the 
others for no benefit. The more combinations of causes there are in the results, the 
more potential configurations there are, and thus an exhaustive generation of all 
possible allocations is not always possible.  
 
Instead, optimisation using Tabu search is used to identify optimal or near optimal 
configurations with low costs. Each configuration is evaluated according to total cost 
(the sum of all ASIL cost values of all basic events leading to the hazards) using the 
cost heuristic defined.  
 
Going back to the model results, we can open up the configurations to see which 
(A)SILs have been assigned to each basic event: 
 

 

Figure 73: Allocations to each event 
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The total cost is the sum of the cost heuristic applied to each of these allocations. 
These configurations then serve as potential allocations that should be evaluated 
separately to ensure that all safety requirements are properly met, since some 
constraints may not be captured by the model or by HiP-HOPS. 
 

6.6. Tutorial 6: Architectural Optimisation 

 
For the final tutorial, we will look at architectural optimisation. As with the last tutorial, 
we will start with a more substantial pre-made model — in this case, a fuel oil service 
system for a cargo ship (tutorial6_optimisation.slx). By defining alternative 

implementations for the various components of the system, we generate a design 
space of possible architectural configurations that we can then explore via an 
optimisation process. 
 

6.6.1. The system model 

Figure 79 shows the fuel oil service system. The goal is to ensure fuel flows to the 
main engine; lack of fuel results in loss of engine propulsion (OmissionEnergy-

mainEngine.mech), which is a serious issue that can lead to the ship becoming 

grounded as a result of unpowered drifting.  
 

 

Figure 74: Fuel oil service system for a cargo ship. 

The following tables contain the implementation failure data for the components in 
the example. The main engine provides the system output (i.e., propulsion) and thus 
also the system-level hazard (NoEnginePower, an omission of energy at the 

mechanical output of the engine) which is caused by an omission of flow of oil at the 
input. It has no internal failures. 
 

mainEngine 

Output Deviation Description Failure logic 
(Propagation) 

OmissionEnergy-mech 
(System output) 

Omission of energy at the mechanical 
output of the mainEngine caused by 
an omission of flow of oil at the input 

OmissionFlow-In 

 
The other components in the system (indicator filter, viscosimeter, pre-heater, 
circulation pump, mixing tank, flow meter, automatic filter, booster pump, and service 
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tank) each contain 3 alternative subsystems that define different levels of parallel 
redundancy (shown in the 3 figures below). In each case the propagation of the 
omission of flow of oil is combined in the ‘AND’ block so that both (or all three) 
redundant components must fail to cause failure of the subsystem. 
 

 

Figure 75: Alternative 1: no redundancy 

 

Figure 76: Alternative 2: one parallel redundancy 

 

Figure 77: Alternative 3: two parallel redundancies 

Other than the default single component subsystem, all of these alternative 
subsystems are modelled as separate files and referenced from within the 
Implementation Editor: 
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Figure 78: Setting an alternative subsystem model in the Implementation Editor 

 
For this potential substitution to be valid, the subsystem model must have top-level 
ports that match (both in number, direction, and name) the ports in the parent 
component. For the flowmeter, there is a single input (In) and a single output (Out), 
so there needs to be a corresponding In and Out in the subsystem. 
 
All of the subcomponents have the same failure propagation logic. The omission of 
flow of oil at the output is caused by the omission of flow of oil at the input, or an 
internal failure of the component. 
 

All other system subcomponents 

Output 
Deviation 

Description Failure logic (Propagation) 

OmissionFlow-
Out 

Omission of flow of oil at the 
output can be caused either by 
an omission of flow of oil at the 
input or an internal failure mode 
of the component 

OmissionFlow-In  
or  
[component]Failure 

 
Each of the subcomponents has 3 alternative implementations with different costs 
and the internal failure modes have different failure rates. 
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 Alternative 1 Alternative 2 Alternative 3 

Components Cost 
Failure 
Rate 

Cost 
Failure 
Rate 

Cost 
Failure 
Rate 

Indicator filter 1500 5.0E-7 2500 2.0E-7 3222 1.0E-7 

Viscosimeter 2500 2.5E-6 3178 1.0E-6 3814 5.0E-7 

Pre-heater 2000 6.7E-6 2505 5.0E-6 3956 1.0E-6 

Circulation pump 6000 3.2E-5 13380 2.0E-5 18000 7.0E-6 

Mixing tank 2000 1.6E-5 2963 8.0E-6 4444 2.0E-6 

Flow meter 2000 1.0E-5 3000 1.0E-6 4444 5.0E-7 

Automatic filter 2000 1.0E-5 2647 5.0E-6 3529 1.0E-6 

Booster pump 5000 3.2E-5 10682 2.0E-5 12500 5.0E-6 

Service tank 1500 1.6E-5 1957 5.0E-6 2739 1.0E-6 

 
This means that for a single subcomponent subsystem there are three possible 
configurations, for a dual subsystem there are nine (3 x 3), and for a triple subsystem 
there are 27 (3 x 3 x 3), for a total of 39 possible configurations for every top-level 
component (aside from the mainEngine). 
 
The cost is set in the same Implementation Editor interface; as mentioned previously, 
no units are defined so care must be taken to ensure that the numbers have a 
consistent meaning across the model. A value for weight can also be added for 
situation where this is particularly important, e.g. in aircraft design. 
 

6.6.2. Configuring optimisation options 

Once all of the model failure data and implementation options have been defined, the 
next step is to set up the optimisation process itself.  
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Figure 79: Optimisation parameters 

All of these configuration parameters can be found in the Model Parameters Editor 
under the optimisation parameters section.  
 
The first option is to set the number of generations the underlying genetic algorithm 
will run for. Each generation will evolve the solution set, so in general more 
generations will result in better solutions. However, given that HiP-HOPS must 
analyse and evaluate each possible solution, setting a high value here could result in 
a very long runtime. It is recommended to use a lower value first (e.g. the default 
value of 100) and then adjust depending on the quality of the results. 
 
Underneath the generations box is the objectives section. Here, the objectives of the 
optimisation can be configured. Up to three objectives can be used. Cost and weight 
optimise according to those two properties. Additionally, one may optimise the 
unavailability for a specific hazard/fault tree (like NoEnginePower in the example 

above), or select "Risk" to minimise the overall risk (i.e., the sum of unavailability * 
severity for each hazard) across the whole system.  
 
Each objective can be set to either minimise or maximise (minimise is usually 
recommended!) and both lower and upper bounds can be optionally used to 
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constrain the solution set, e.g. if the total cost must be below a given value. Note 
however that these bounds are used as guidelines for the optimisation: HiP-HOPS 
will attempt to favour solutions that fall within the bounds but cannot guarantee that 
all final solutions will be within them. 
 
The final step is to launch the optimisation using the 'Optimise model' button on the 
Launcher. Status updates will begin to be written to the Matlab command window: 
 

 

Figure 80: Optimisation progress 

Note that the results are not opened until the process completes, which may take 
some time, though intermediate results are output at regular intervals in case of 
interruptions (usually every 50 generations).  
 
Unlike normal analysis output, optimisation results are output to the <modelname>-
OptimisationResults directory. 
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6.6.3. Viewing the optimisation results 

Once complete, the results should open automatically. You will be presented with a 
list of all configurations found, along with their scores for each of the objectives set 
(e.g. total cost and unavailability in this case). Because this was a multi-objective 
optimisation, the results all represent Pareto-optimal trade-offs, i.e. while one solution 
might be worse in one objective, it should be better in another, and so there should 
never be a solution in the results which is strictly worse in all objectives than another. 
 
As usual, you can sort the results by clicking on the appropriate headings.  
 
 

 

Figure 81: Optimisation output 

Clicking on the links in the last column will display the corresponding model 
configuration in a tree format. Each configurable component in the model is listed 
along with the implementations used. In our example here, for example, we would 
expect the more reliable solutions to be those which used multiple redundancy (i.e., 
subsystem implementations with 2 or 3 subcomponents in parallel) and high quality 
implementations, which would also be the most expensive; vice versa, the cheapest 
solutions would be those with mostly individual components, which would be least 
reliable.  
 
Clicking on one of the more reliable configurations reveals this to be the case: 
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Figure 82: One of the optimisation configurations 

 
The information obtained by the optimisation is meant to be a guide for continued 
architectural development rather than a complete solution in itself. It is intended to 
help rapidly evaluate large potential design spaces to narrow down the directions for 
future design work, e.g. by showing which areas of the system would benefit most 
from being replicated or being replaced with different implementations. 
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7. Running HiP-HOPS as a standalone engine 
 
The HiP-HOPS tool itself is separate from the Matlab Simulink interface and can be 
executed independently. The necessary files are all inside the HiP-
HOPS_FailureEditor subdirectory of your HiP-HOPS install and are: 
 

• hipop.exe   The primary HiP-HOPS executable 

• dal.exe   The DAL allocation program (launched by hipop.exe) 

• asildecomp.exe The ASIL allocation program (launched by hipop.exe) 

• FTOutput.zip  Contains the files necessary to display the output 
 
As input, HiP-HOPS (i.e., hipop.exe) requires a model file in XML format. The path to 
this file is always the first program argument (to avoid errors, ensure the path does 
not contain spaces). The HiP-HOPS Matlab Simulink interface automatically 
transforms and exports this file when you press 'Analyse model' in the Launcher, but 
the file can be generated by other tools or even by hand if required. In addition, 
various arguments may be provided as further instructions for HiP-HOPS (see 
section 7.1). 
 
Just as HiP-HOPS is independent of any particular modelling tool, its output can also 
be viewed or processed independently. By default, HiP-HOPS outputs a series of 
XML files (using the outputtype=HTML or XML options); these files can also be 
consolidated into a single file using (using the outputtype=RESULTS option) for ease 
of post-processing in other tools. The dal.exe and asildecomp.exe programs load 
these XML files in just such a manner. 
 
Further documentation regarding the input and output XML formats is available upon 
request. 
 
 

7.1. Command Line Parameters 

 
The tables below describe the currently supported command line parameters in 
HiP-HOPS. There are parameters that configure standard analysis, parameters for 
architectural optimisation, and parameters for safety requirement (SIL) allocation and 
decomposition. 
 
In addition to controlling HiP-HOPS when launched as a standalone executable, 
these parameters can also be used in the 'Advanced Parameters' field of the Model 
Parameters window in Simulink, as described in section 4.10. 
 
Most parameters are of the form <parameter>=<value>. Possible values are also 

included in the table. 
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Table 5: Basic analysis parameters 

Parameter Values Effect 

analyse true/false If false, HiP-HOPS will generate fault 
trees but will skip its fault tree analysis 
phase. Depending on other options set, 
this will output the fault trees but not the 
cut sets or FMEA. 
Defaults to true. 

circles true/false Determines whether HiP-HOPS will 
remove cut sets with circle nodes where 
it has detected circular logic or whether it 
will omit these cut sets entirely. A circle 
node represents a contradiction in the 
logic and thus any cut set containing one 
can never be true. However, it can be 
useful to know that circular logic exists. 
As such, it defaults to false. 

contract true/false As part of its normal fault tree analysis 
process, HiP-HOPS will contract the fault 
trees by removing redundant nodes. This 
results in better performance as well as 
more compact and readable fault trees, 
but can be disabled if so desired. 
Defaults to true. 

countNormalEvents true/false When counting the number of basic 
events in a cut set to determine order, 
this parameter will include or exclude 
normal events in the count. 
Defaults to true. 

decomposeDALs none Enables DAL decomposition mode. See 
SIL decomposition parameters table 
below for further options. 

decomposeSILs none Enables ASIL decomposition mode. 
Equivalent to ticking the "Decompose 
SILs" box. See SIL decomposition 
parameters table below for further 
options. 

displayOutput true/false If false, HiP-HOPS will not automatically 
open its results in the default system 
browser. 
Defaults to true. 

idevns true/false Determines whether HiP-HOPS will 
remove cut sets with hanging input 
deviation nodes or whether it will omit 
these cut sets entirely. A hanging input 
deviation represents a contradiction in 
the logic and thus any cut set containing 
one can never be true. Although they 
indicate dead ends in the propagation, 
hanging input deviations are not 
necessarily indicative of errors in the 
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failure logic. 
It defaults to true. 

maxCutSetSize integer As above. 

modularise true/false As part of its normal fault tree analysis 
process, HiP-HOPS will attempt to 
identify independent sub-modules within 
the fault trees and analyse these 
separately. This results in significant 
performance benefits but can be disabled 
if required. 
Defaults to true. 

optimise true/false Enables architectural optimisation mode. 
See Optimisation parameters table for 
further options. 

outputContractedTrees true/false Assuming the contract parameter is set to 
true, by default HiP-HOPS will output the 
contracted fault trees rather than the 
originally synthesised fault trees. This 
can be overridden by setting this 
parameter to false. Note that the value of 
contract overrides this: HiP-HOPS cannot 
output contracted trees if they are not 
generated in the first place. 
Defaults to true. 

outputdir directory Tells HiP-HOPS to output to a different 
location. Must be a valid directory 
(HiP-HOPS will not create the path). 

outputtype XML,  
HTML, 
EXCEL,  
RESULTS 

This parameter tells HiP-HOPS what 
form of output to generate: 
 
HTML = standard browser output (a 
mixture of XML and JS files) 
XML = XML only output 
EXCEL = generates an .xlsx file that can 
be opened in Microsoft Excel 2007 or  
better 
RESULTS = generates a single XML file 
to <modelname>-Results that contains all 
the results all together, rather than in 
different files (as is the case with the 
XML setting). Intended as raw input data 
for other tools and cannot be opened in a 
browser. 
 
These values can be concatenated 
together in a comma-separated list, e.g. 
"outputtype=HTML,EXCEL".  
 
By default, when executed directly HiP-
HOPS will not generate any output files 
and will only output results to the 
console. When used with the Simulink 
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interface, HTML output is used by default 
and the Excel output can be added with 
the appropriate tick box. Using the 
outputtype parameter in the Advanced 
Parameters will replace these settings. 

quantanalysis true/false If set to false, this will tell HiP-HOPS not 
to perform quantitative analysis. This can 
be useful for achieving small 
performance increases when only 
qualitative (cut set) results are required. 
Defaults to true. 

runSilent true/false HiP-HOPS will output a lot of information 
to the console (stdout) by default. Setting 
this option to true will disable this output. 
Defaults to false. 

warnings true/false Enables/disables generation of warnings 
in HiP-HOPS. 
Defaults to true. 

 
As well as fault tree analysis, HiP-HOPS is capable of additional operations, 
including architectural optimisation and SIL decomposition and allocation. Both 
operations require a specially configured model and have their own additional sets of 
parameters, described below. 
 

Table 6: Optimisation parameters (NB: Only applicable in optimisation) 

Parameter Values Effect 

allowInfeasibleResults true/false Determines whether solutions that 
exceed upper and lower bounds on the 
optimisation objectives can be output to 
the results. Note the distinction between 
this and strictBoundaries as this allows 
them to exist in the population during 
optimisation but exclude them from the 
results. 
Defaults to false. 

childPopulationSize integer How many new individual candidate 
solutions are created for evaluation each 
generation. These are then combined 
with the existing population before the 
numbers are culled to meet the 
populationSize limit. 
Defaults to 100. 

crossoverRate float The probability (0.0 to 1.0) that 
recombination will occur between two 
individual ‘parent’ candidate solutions 
when production a new candidate 
solution. 
Defaults to 0.9. 

forceRestart true/false Overrides the inclusion of a 
previousStateFileName to start without 
loading a previous state. 
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Defaults to false. 
includeArchive true/false When the size of the Pareto front is 

greater than the population size, then 
feasible candidate solutions can get lost. 
The archive will maintain all found 
feasible undominated solutions found by 
the algorithm. 
Defaults to true. 

maxGenerations integer How many generations the optimisation 
algorithm will be run for. Note that this 
acts as an upper limit when used in 
conjunction with a previous state (see 
previousStateFileName) rather than 
being an additional number of 
generations. 
Defaults to 1000. 

mutationRate float The probability (0.0 to 1.0) that an 
encoding site will be randomly mutated. 
Defaults to 0.05. 

numberOfRepeatRuns integer How many times to repeat the 
optimisation. Usually 0 to 10 to account 
for the stochastic nature of the 
optimisation algorithms. For each repeat 
run, the complete number of generations 
specified by maxGenerations will be 
executed. 
Defaults to 1. 

outputInterval integer In order to be able to monitor the state of 
the optimisation, whilst minimizing the 
impact on performance, you can use this 
parameter to set a number of generations 
to wait before outputting the current 
results state of the optimisation. This 
should usually be some factor of 
maxGenerations. Set to zero if you don’t 
want to activate this feature. 
Defaults to 0. 

populationSize integer The number of individual solution 
candidates that are maintained each 
generation. 
Defaults to 100. 

previousStateFileName filepath You may wish to further explore a 
population for more generations than you 
previously set without starting over from 
scratch. You can use this parameter to 
specify a previous results xml file which 
will load that as the starting population for 
the optimisation. Note that you will need 
to increase the maxGenerations 
parameter. 

pureElitist true/false Only undominated solutions on the 
Pareto front are allowed in the 
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population. 
Defaults to false. 

strictBoundaries true/false When upper and lower bounds are 
specified for the optimisation objectives 
then setting strictBoundaries=true will 
cause all solutions that exceed the 
boundaries to be cut from the population. 
Otherwise they are allowed in the 
population, but selective pressures 
should tend towards their removal over 
the course of the optimisation. 
Defaults to false. 

 

Table 7: SIL allocation parameters (NB: Requires that either decomposeSILs=true or 
decomposeDALs=true) 

Parameter Values Effect 

asilCostHeuristic comma 
separated 
numbers 

The cost associated with ASILs QM 
and A to D in that order. 
Defaults to 0,10,20,30,40. 

dalCostHeuristic comma 
separated 
numbers 

The cost associated with DALs A to E 
in that order. 
Defaults to 40,30,20,10,0. 

tabuNumOutputSolutions integer Maximum number of undominated 
decomposition alternatives to be 
output to the results. 
Defaults to 50. 

tabuPascLimit float Maximum value for the tabu period 
multiplier for ascending moves. 
Defaults to 0.4. 

tabuPdesLimit float Maximum value for the tabu period 
multiplier for descending moves. 
Defaults to 1. 

tabuRepetitionLimit integer Analogous to maxGenerations, how 
many iterations to run the tabu search 
optimisation for. 
Default to 1000. 

tabuUpdatePascFrequency integer Number of iterations that pass before 
updating the value of the tabu period 
for ascending moves. 
Defaults to 4. 

tabuUpdatePdesFrequency integer Number of iterations that pass before 
updating the value of the tabu period 
for descending moves. 
Defaults to 3. 

 
 
 


